Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quasicontinuum simulation of crack propagation in nanocrystalline Ni

Shao Yu-Fei Wang Shao-Qing

Quasicontinuum simulation of crack propagation in nanocrystalline Ni

Shao Yu-Fei, Wang Shao-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The propagation process of crack in the nanocrystalline Ni is simulated via the quasicontinuum method. The results show that the stress near the crack tip could prompt the disassociation of grain boundaries, and the formation of stacking faults and deformation twins. Farther from the crack tip, fewer deformation twins can be found. There are more stacking faults than deformation twins in the grains, which approximately have the same distance to the crack tip. The effect on deformation twins from the variation of local stress and generalized planar fault energies is manifested by these results. The distribution of hydrostatic stress on atomic-level around the crack tip is also calculated. It is shown that nanovoids can be easily created in grain boundaries in front of the crack tip. There exists an intense tensile stress state in the grain boundary regions around these nanovoids. As a result of the stress accumulation, the crack propagates along the grain boundaries. Our simulated results qualitatively uncover the propagation process of crack in nanocrystalline Ni, which agrees well with the relevant experimental results.
    • Funds:
    [1]

    Meyers M A, Mishra A, Benson D J 2006 Prog. Mater. Sci. 51 427

    [2]

    Dao M, Lu L, Asaro R J, Hosson J T M, Ma E 2007 Acta Mater. 55 4041

    [3]

    Zhao Y H, Topping T, Bingert J F, Thornton J J, Dangelewicz A M, Li Y, Liu W, Zhu Y T, Zhou Y Z, Lavernia E J 2008 Adv. Mater. 20 3028

    [4]

    Kumar K S, Suresh S, Chisholm M F, Horton J A, Wang P 2003 Acta Mater. 51 387

    [5]

    Shan Z W, Knapp J A, Follstaedt D M, Stach E A, Wiezorek J M K, Mao S X 2008 Phys. Rev. Lett. 100 105502

    [6]

    Xie J J, Wu X L, Hong Y S 2007 Scripta Mater. 57 5

    [7]

    Farkas D, Swygenhoven H V, Derlet P M 2002 Phys. Rev. B 66 060101

    [8]

    Cao A J, Wei Y G 2007 Phys. Rev. B 76 024113

    [9]

    Farkas D, Willemann M, Hyde B 2005 Phys. Rev. Lett. 94 165502

    [10]

    Zhou H F, Qu S X 2010 Nanotechnology 21 035706

    [11]

    Cao L X, Wang C Y 2007 Acta Phys. Sin. 56 413 (in Chinese) [曹莉霞、王崇愚 2007 物理学报 56 413]

    [12]

    Xie H X, Wang C Y, Yu T, Du J P 2009 Chin. Phys. B 18 251

    [13]

    Abraham F F, Walkup R, Gao H J, Duchaineau M, Rubia T, Seager M 2002 Proc. Natl. Acad. Sci. USA 99 5783

    [14]

    Tadmor E B, Hai S 2003 J. Mech. Phys. Solids 51 765

    [15]

    Wang H T, Qin Z D, Ni Y S, Zhang W 2009 Acta Phys. Sin. 58 1057 (in Chinese) [王华滔、秦昭栋、倪玉山、张 文 2009 物理学报 58 1057]

    [16]

    Shimokawa T, Kinari T, Shintaku S 2007 Phys. Rev. B 75 144108

    [17]

    Miller R E, Ortiz M, Phillips R, Shenoy V, Tadmor E B 1998 Eng. Fracture Mech. 61 427

    [18]

    Zhou T, Yang X H, Chen C Y 2009 Int. J. Solids Struct. 46 1975

    [19]

    Swygenhoven H V, Farkas D, Caro A 2000 Phys. Rev. B 62 831

    [20]

    Swygenhoven H V, Derlet P M, Froseth A G 2004 Nature Mater. 3 399

    [21]

    Wu X L, Zhu Y T 2008 Phys. Rev. Lett. 101 025503

    [22]

    Farkas D, Petegem S V, Derlet P M, Swygenhoven H V 2005 Acta Mater. 53 3115

    [23]

    Tadmor E B, Ortiz M, Phillips R 1996 Philos. Mag. A 73 1529

    [24]

    Tadmor E B, Phillips R, Ortiz M 1996 Langmuir 12 4529

    [25]

    Miller R E, Tadmor E B 2002 J. Computer-Aided Mater. Design 9 203

    [26]

    Voronoi G Z 1908 J. Reine Angew. Math. 134 199

    [27]

    Hai S, Tadmor E B 2003 Acta Mater. 51 117

    [28]

    Sih G C, Liebowitz H 1968 Fracture: An Advanced Treatise (Vol. 2) (New York: Academic Press) p67

    [29]

    Meyers M A, Chawla K K 2009 Mechanical Behavior of Materials (2nd Ed) (New York: Cambridge University Press) p114

    [30]

    Mishin Y, Farkas D, Mehl M J, Papaconstantopoulos D A 1999 Phys. Rev. B 59 3393

    [31]

    Li J 2003 Modeling Simul. Mater. Sci. Engng. 11 173

    [32]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [33]

    Cormier J, Rickman J M, Delph T J 2001 J. Appl. Phys. 89 99

    [34]

    Saramas M, Derlet P M, Swygenhoven H V 2003 Phys. Rev. B 68 224111

    [35]

    Zimmerman J A, Gao H J, Abraham F F 2000 Modeling Simul. Mater. Sci. Engng. 8 103

    [36]

    Siegel D J 2005 Appl. Phys. Lett. 87 121901

  • [1]

    Meyers M A, Mishra A, Benson D J 2006 Prog. Mater. Sci. 51 427

    [2]

    Dao M, Lu L, Asaro R J, Hosson J T M, Ma E 2007 Acta Mater. 55 4041

    [3]

    Zhao Y H, Topping T, Bingert J F, Thornton J J, Dangelewicz A M, Li Y, Liu W, Zhu Y T, Zhou Y Z, Lavernia E J 2008 Adv. Mater. 20 3028

    [4]

    Kumar K S, Suresh S, Chisholm M F, Horton J A, Wang P 2003 Acta Mater. 51 387

    [5]

    Shan Z W, Knapp J A, Follstaedt D M, Stach E A, Wiezorek J M K, Mao S X 2008 Phys. Rev. Lett. 100 105502

    [6]

    Xie J J, Wu X L, Hong Y S 2007 Scripta Mater. 57 5

    [7]

    Farkas D, Swygenhoven H V, Derlet P M 2002 Phys. Rev. B 66 060101

    [8]

    Cao A J, Wei Y G 2007 Phys. Rev. B 76 024113

    [9]

    Farkas D, Willemann M, Hyde B 2005 Phys. Rev. Lett. 94 165502

    [10]

    Zhou H F, Qu S X 2010 Nanotechnology 21 035706

    [11]

    Cao L X, Wang C Y 2007 Acta Phys. Sin. 56 413 (in Chinese) [曹莉霞、王崇愚 2007 物理学报 56 413]

    [12]

    Xie H X, Wang C Y, Yu T, Du J P 2009 Chin. Phys. B 18 251

    [13]

    Abraham F F, Walkup R, Gao H J, Duchaineau M, Rubia T, Seager M 2002 Proc. Natl. Acad. Sci. USA 99 5783

    [14]

    Tadmor E B, Hai S 2003 J. Mech. Phys. Solids 51 765

    [15]

    Wang H T, Qin Z D, Ni Y S, Zhang W 2009 Acta Phys. Sin. 58 1057 (in Chinese) [王华滔、秦昭栋、倪玉山、张 文 2009 物理学报 58 1057]

    [16]

    Shimokawa T, Kinari T, Shintaku S 2007 Phys. Rev. B 75 144108

    [17]

    Miller R E, Ortiz M, Phillips R, Shenoy V, Tadmor E B 1998 Eng. Fracture Mech. 61 427

    [18]

    Zhou T, Yang X H, Chen C Y 2009 Int. J. Solids Struct. 46 1975

    [19]

    Swygenhoven H V, Farkas D, Caro A 2000 Phys. Rev. B 62 831

    [20]

    Swygenhoven H V, Derlet P M, Froseth A G 2004 Nature Mater. 3 399

    [21]

    Wu X L, Zhu Y T 2008 Phys. Rev. Lett. 101 025503

    [22]

    Farkas D, Petegem S V, Derlet P M, Swygenhoven H V 2005 Acta Mater. 53 3115

    [23]

    Tadmor E B, Ortiz M, Phillips R 1996 Philos. Mag. A 73 1529

    [24]

    Tadmor E B, Phillips R, Ortiz M 1996 Langmuir 12 4529

    [25]

    Miller R E, Tadmor E B 2002 J. Computer-Aided Mater. Design 9 203

    [26]

    Voronoi G Z 1908 J. Reine Angew. Math. 134 199

    [27]

    Hai S, Tadmor E B 2003 Acta Mater. 51 117

    [28]

    Sih G C, Liebowitz H 1968 Fracture: An Advanced Treatise (Vol. 2) (New York: Academic Press) p67

    [29]

    Meyers M A, Chawla K K 2009 Mechanical Behavior of Materials (2nd Ed) (New York: Cambridge University Press) p114

    [30]

    Mishin Y, Farkas D, Mehl M J, Papaconstantopoulos D A 1999 Phys. Rev. B 59 3393

    [31]

    Li J 2003 Modeling Simul. Mater. Sci. Engng. 11 173

    [32]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [33]

    Cormier J, Rickman J M, Delph T J 2001 J. Appl. Phys. 89 99

    [34]

    Saramas M, Derlet P M, Swygenhoven H V 2003 Phys. Rev. B 68 224111

    [35]

    Zimmerman J A, Gao H J, Abraham F F 2000 Modeling Simul. Mater. Sci. Engng. 8 103

    [36]

    Siegel D J 2005 Appl. Phys. Lett. 87 121901

  • [1] Wang Peng, Xu Jian-Gang, Zhang Yun-Guang, Song Hai-Yang. Molecular dynamics simulation of effect of grain on mechanical properties of nano-polycrystal -Fe. Acta Physica Sinica, 2016, 65(23): 236201. doi: 10.7498/aps.65.236201
    [2] Sun Hao-Liang, Song Zhong-Xiao, Xu Ke-Wei. Effect of substrate constraint on stress-induced cracking of sputtered tungsten thin film. Acta Physica Sinica, 2008, 57(8): 5226-5231. doi: 10.7498/aps.57.5226
    [3] He Yan, Zhou Gang, Liu Yan-Xia, Wang Hao, Xu Dong-Sheng, Yang Rui. Atomistic simulation of microvoid formation and its influence on crack nucleation in hexagonal titanium. Acta Physica Sinica, 2018, 67(5): 050203. doi: 10.7498/aps.67.20171670
    [4] He Xin-Fu, Yang Wen, Fan Sheng. Multi-scale modeling of radiation damage in FeCr alloy. Acta Physica Sinica, 2009, 58(12): 8657-8669. doi: 10.7498/aps.58.8657
    [5] Cao Li-Xia, Wang Chong-Yu. Molecular dynamics simulation of fracture in α-iron. Acta Physica Sinica, 2007, 56(1): 413-422. doi: 10.7498/aps.56.413
    [6] Ma Teng-Yu, Li Wan-Jun, He Xian-Wang, Hu Hui, Huang Li-Juan, Zhang Hong, Xiong Yuan-Qiang, Li Hong-Lin, Ye Li-Juan, Kong Chun-Yang. Size Regulation and Photoluminescence Properties of β-Ga2O3 Nanomaterials. Acta Physica Sinica, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [7] Liu Huang-Qing, Wang Ling-Ling, Qin Wei-Ping. Luminescence of Eu3+ Ions in nanocrystalline zirconia. Acta Physica Sinica, 2004, 53(1): 282-285. doi: 10.7498/aps.53.282
    [8] Feng Qiu-Ju, Xu Rui-Zhuo, Guo Hui-Ying, Xu Kun, Li Rong, Tao Peng-Cheng, Liang Hong-Wei, Liu Jia-Yuan, Mei Yi-Ying. Influences of the substrate position on the morphology and characterization of phosphorus doped ZnO nanomaterial. Acta Physica Sinica, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [9] Li Chao, Yao Yuan, Yang Yang, Shen Xi, Gao Bin, Huo Zong-Liang, Kang Jin-Feng, Liu Ming, Yu Ri-Cheng. In situ transmission electron microscopy studies on nanomaterials and HfO2-based storage nanodevices. Acta Physica Sinica, 2018, 67(12): 126802. doi: 10.7498/aps.67.20180731
    [10] Lai Zhan-Ping. Recent progress in preparation of material and device of two-dimensional MoS2. Acta Physica Sinica, 2013, 62(5): 056801. doi: 10.7498/aps.62.056801
    [11] Shao Yuan-Zhi, Zhong Wei-Rong, Ren Shan, Cai Zhi-Su, Gong Lei. Multifractal spectra of growing clusters in nanoscale characterized by small angle x-ray scattering. Acta Physica Sinica, 2005, 54(7): 3290-3296. doi: 10.7498/aps.54.3290
    [12] Yang Wen-Hua, Liu Yong-Sheng, Zhu Yan-Yan, Chen Jing, Yang Jin-Huan, Yang Zheng-Long. Design of new nano anti-reflection coating for space silicon solar cells. Acta Physica Sinica, 2009, 58(7): 4992-4996. doi: 10.7498/aps.58.4992
    [13] Liu Jun, Zhou Wei-Chang, Zhang Jian-Fu. Synthesis and photonics characteristics research of CdS:Cu 1D nanostructures. Acta Physica Sinica, 2012, 61(20): 206101. doi: 10.7498/aps.61.206101
    [14] Cheng Da-Wei, Bao Li-Hong, Zhang Hong-Yan, Pan Xiao-Jian, Zhao Feng-Qi, O. Tegus, Chao Luo-Meng. Nanocrystalline CeB6 and SmB6 powder prepared by evaporative condensation method and their visible light transparency. Acta Physica Sinica, 2019, 68(24): 246101. doi: 10.7498/aps.68.20191312
    [15] Yang Xin-Sheng, Wang Yu, Dong Liang, Zhang Feng, Qi Li-Zhen. Electrochromic effect of nanostructured WO3 bulk. Acta Physica Sinica, 2004, 53(8): 2724-2727. doi: 10.7498/aps.53.2724
    [16] Lin Zhi-Xian, Guo Tai-Liang, Hu Li-Qin, Yao Liang, Wang Jing-Jing, Yang Chun-Jian, Zhang Yong-Ai, Zheng Ke-Lu. Tetrapod-like ZnO nanostructures serving as cold cathodes for flat panel displays. Acta Physica Sinica, 2006, 55(10): 5531-5534. doi: 10.7498/aps.55.5531
    [17] Zhang Peng-Cheng, Fang Wen-Yu, Bao Lei, Kang Wen-Bin. Theoretical and computational methods of protein liquid-liquid phase separation. Acta Physica Sinica, 2020, 69(13): 138701. doi: 10.7498/aps.69.20200438
    [18] Wu De-Hui, Liu Zhi-Tian, Wang Xiao-Hong, Su Ling-Xin. Mechanism analysis of influence of surface-breaking orientation on magnetic leakage field distribution. Acta Physica Sinica, 2017, 66(4): 048102. doi: 10.7498/aps.66.048102
    [19] Recent research progress of non-noble metal based. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200788
    [20] Ma Chun-Lan. The fabrication of high-quality periodic porous alumina templates. Acta Physica Sinica, 2004, 53(6): 1952-1955. doi: 10.7498/aps.53.1952
  • Citation:
Metrics
  • Abstract views:  3716
  • PDF Downloads:  949
  • Cited By: 0
Publishing process
  • Received Date:  06 January 2010
  • Accepted Date:  22 January 2010
  • Published Online:  05 May 2010

Quasicontinuum simulation of crack propagation in nanocrystalline Ni

  • 1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

Abstract: The propagation process of crack in the nanocrystalline Ni is simulated via the quasicontinuum method. The results show that the stress near the crack tip could prompt the disassociation of grain boundaries, and the formation of stacking faults and deformation twins. Farther from the crack tip, fewer deformation twins can be found. There are more stacking faults than deformation twins in the grains, which approximately have the same distance to the crack tip. The effect on deformation twins from the variation of local stress and generalized planar fault energies is manifested by these results. The distribution of hydrostatic stress on atomic-level around the crack tip is also calculated. It is shown that nanovoids can be easily created in grain boundaries in front of the crack tip. There exists an intense tensile stress state in the grain boundary regions around these nanovoids. As a result of the stress accumulation, the crack propagates along the grain boundaries. Our simulated results qualitatively uncover the propagation process of crack in nanocrystalline Ni, which agrees well with the relevant experimental results.

Reference (36)

Catalog

    /

    返回文章
    返回