搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米材料及HfO2基存储器件的原位电子显微学研究

李超 姚湲 杨阳 沈希 高滨 霍宗亮 康晋锋 刘明 禹日成

纳米材料及HfO2基存储器件的原位电子显微学研究

李超, 姚湲, 杨阳, 沈希, 高滨, 霍宗亮, 康晋锋, 刘明, 禹日成
PDF
导出引用
导出核心图
  • 总结了我们将原位技术和透射电子显微学分析方法相结合,针对纳米材料和器件的结构、形貌、成分以及电势分布等物理性质的动态行为所开展的综合物性表征和分析工作.主要成果有:揭示了C60纳米晶须在焦耳热作用下的结构相变路径;观察到了电荷俘获存储器中的电荷存储位置以及栅极电压诱导的氧空位缺陷;研究了阻变存储器中氧空位通道的形成过程以及导电通道的开关机理.这些成果不但有助于深入理解纳米材料和器件相关功能的物理机理,改善其工作性能,更展示了透射电子显微学在微电子领域强大的研究能力.
      通信作者: 康晋锋, rcyu@iphy.ac.cn;kangjf@pku.edu.cn;liuming@ime.ac.cn ; 刘明, rcyu@iphy.ac.cn;kangjf@pku.edu.cn;liuming@ime.ac.cn ; 禹日成, rcyu@iphy.ac.cn;kangjf@pku.edu.cn;liuming@ime.ac.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0300701)、国家重点基础研究发展计划(批准号:2013CB932904,2012CB932302,2010CB934202)和国家自然科学基金(批准号:11374343,61421005,11574376,11174336,61334007,10974235,11274365)资助的课题.
    [1]

    Xu T, Sun L T 2015 Small 11 3247

    [2]

    Hofmann S, Sharma R, Wirth C T, Sodi F C, Ducati C, Kasama T, Borkowski R E D, Drucker J, Bennett P, Robertson J 2008 Nature Mater. 7 372

    [3]

    Kodambaka S, Tersoff J, Reuter M C, Ross F M 2007 Science 316 729

    [4]

    Wang L H, Teng J, Liu P, Hirata A, Ma E, Zhang Z, Chen M W, Han X D 2014 Nat. Commun. 5 4402

    [5]

    Hannon J B, Kodambaka S, Ross F M, Tromp R M 2006 Nature 440 69

    [6]

    Ross F M, Tersoff J, Reuter M C 2005 Phys. Rev. Lett. 95 146104

    [7]

    Wang L H, Han X D, Liu P, Yue Y H, Zhang Z, Ma E 2010 Phys. Rev. Lett. 105 135501

    [8]

    Gamalski A D, Ducati C, Hofmann S J 2011 Phys. Chem. C 115 4413

    [9]

    Huang J Y, Chen S, Wang Z Q, Kempa K, Wang Y M, Jo S H, Chen G, Dresselhaus M S, Ren Z F 2006 Nature 439 281

    [10]

    Poncharal P, Wang Z L, Ugarte D, de Heer W A 1999 Science 283 1513

    [11]

    Filleter T, Bernal R, Li S, Espinosa H D 2011 Adv. Mater. 23 2855

    [12]

    Han X D, Wang L H, Yue Y H, Zhang Z 2015 Ultramicroscopy 151 94

    [13]

    Huang J Y, Zhong L, Wang C M, Sullivan J P, Xu W, Zhang L Q, Mao S X, Hudak N S, Liu X H, Subramanian A, Fan H Y, Qi L A, Kushima A, Li J 2010 Science 330 1515

    [14]

    Zhu C Y, Xu F, Min H H, Huang Y, Xia W W, Wang Y T, Xu Q Y, Gao P, Sun L T 2017 Adv. Funct. Mater. 27 1606163

    [15]

    Cha D, Ahn S J, Park S Y, Horii H, Kim D H, Kim Y K, Park S O, Jung U I, Kim M J, Kim J 2009 2009 Symposium on VLSI Technology Honolulu, USA, June 16-18, 2009 p204

    [16]

    Kwon D K, Kim K M, Jang J H, Jeon J M, Lee M H, Kim G H, Li X S, Park G S, Lee B, Han S, Kim M, Hwang C S 2010 Nat. Nanotechnol. 5 148

    [17]

    Lehmann M, Lichte H 2002 Microsc. Microanal. 8 447

    [18]

    Li H Y, Tee B C K, Cha J J, Cui Y, Chung J W, Lee S Y, Bao Z N 2012 J. Am. Chem. Soc. 134 2760

    [19]

    Makarova T L 2001 Semiconductors 35 243

    [20]

    Dekker C 1999 Phys. Today 52 22

    [21]

    Ogawa K, Kato T, Ikegami A, Tsuji H, Aoki N, Ochiai Y, Bird J P 2006 Appl. Phys. Lett. 88 112109

    [22]

    Nigam A, Schwabegger G, Ulla M, Ahmed R, Fishchuk I I, Kadashchuk A, Simbrunner C, Sitter H, Premaratne M, Rao V R 2012 Appl. Phys. Lett. 101 083305

    [23]

    Xing Y J, Jing G Y, Xu J, Yu D P, Liu H B, Li Y L 2005 Appl. Phys. Lett. 87 263117

    [24]

    Mikawa M, Kato H, Okumura M, Narazaki M, Kanazawa Y, Miwa N, Shinohara H 2001 Bioconjugate Chem. 12 510

    [25]

    Yoo C S, Nellis W J 1991 Science 254 1489

    [26]

    Minato J, Miyazawa K 2006 Diamond Relat. Mater. 15 1151

    [27]

    Liu H, Li Y, Jiang L, Luo H, Xiao S, Fang H, Li H, Zhu D, Yu D, Xu J, Xiang B 2002 J. Am. Chem. Soc. 124 13370

    [28]

    Minato J I, Miyazawa K, Suga T 2005 Sci. Technol. Adv. Mat. 6 272

    [29]

    Asaka K, Nakayama T, Miyazawa K, Saito Y 2012 Carbon 50 1209

    [30]

    Yang Y, Niu N N, Li C, Yao Y, Piao G Z, Yu R C 2012 Nanoscale 4 7460

    [31]

    Li C, Wang B Z, Yao Y, Piao G Z, Gu L, Wang Y G, Duan X F, Yu R C 2014 Nanoscale 6 6585

    [32]

    Wang L, Liu B B, Li H, Yang W G, Ding Y, Sinogeikin S V, Meng Y, Liu Z X, Zeng X C, Mao W L 2012 Science 337 825

    [33]

    Baik S J, Lim K S 2011 2011 IEEE International Reliability Physics Symposium (IRPS) Monterey, USA, April 10-14, 2011 p6B.4.1

    [34]

    Lwin Z Z, Pey K L, Liu C, Liu Q, Zhang Q, Chen Y N, Singh P K, Mahapatra S 2011 Appl. Phys. Lett. 99 222102

    [35]

    Zhu C X, Xu Z G, Huo Z L, Yang R, Zheng Z W, Cui Y X, Liu J, Wang Y M, Shi D X, Zhang G Y, Li F H, Liu M 2011 Appl. Phys. Lett. 99 223504

    [36]

    Lin Z, Bremond G, Bassani F 2011 Nanoscale Res. Lett. 6 163

    [37]

    Fiorenza P, Polspoel W, Vandervorst W 2006 Appl. Phys. Lett. 88 222104

    [38]

    Yao Y, Li C, Huo Z L, Liu M, Zhu C X, Gu C Z, Duan X F, Wang Y G, Gu L, Yu R C 2013 Nature Commun. 4 2764

    [39]

    Jeno C S, Ranganath T R, Jones H S, Chang T T L 1981 IEDM 27 388

    [40]

    Liang M S, Chang C, Tong Y, Hu C, Brodersen R W 1984 IEEE Trans. Electron Dev. 31 1238

    [41]

    Shibuya K, Dittmann R, Mi S, Waser R 2010 Adv. Mater. 22 411

    [42]

    Dimaria D J, Cartier E, Arnold D 1993 J. Appl. Phys. 73 3367

    [43]

    Su J, Wu E Y 2004 Phys. Rev. Lett. 92 087601

    [44]

    Xiong K, Robertson J 2005 Microelectron. Eng. 80 408

    [45]

    Onishi K, Choi R, Kang C S, Cho H J, Kim Y H, Nich R E, Han J, Krishnan S A, Akbar M S, Lee J C 2003 IEEE Trans. Electron Dev. 50 1517

    [46]

    Houssa M, Pantisano L, Ragnarsson L , Degraeve R, Schram T, Pourtois G, Gendt S D, Groeseneken G, Heyns M M 2006 Mater. Sci. Eng. R 51 37

    [47]

    Zafar S, Kumar A, Gusev E, Cartier E 2005 IEEE Trans. Device Mat. Re. 5 45

    [48]

    Valov I, Linn E, Tappertzhofen S, Schmelzer S, van den Hurk J, Lentz F, Waser R 2013 Nat. Commun. 4 1771

    [49]

    Jang J H, Jung H S, Kim J H, Lee S Y, Hwang C S, Kim M 2011 J. Appl. Phys. 109 023718

    [50]

    Li C, Yao Y, Shen X, Wang Y G, Li J J, Gu C Z, Yu R C, Liu Q, Liu M 2015 Nano Res. 8 3571

    [51]

    Liu Q, Long S B, L H B, Wang W, Niu J B, Huo Z L, Chen J N, Liu M 2010 ACS Nano 4 6162

    [52]

    Tian H, Chen H Y, Gao B, Yu S M, Liang J L, Yang Y, Xie D, Kang J F, Ren T L, Zhang Y G, Wong H S P 2013 Nano Lett. 13 651

    [53]

    Celano U, Goux L, Degraeve R, Fantini A, Richard O, Bender H, Jurczak M, Vandervorst W 2015 Nano Lett. 15 7970

    [54]

    Liu Q, Sun J, L H B, Long S B, Yin K B, Wan N, Li Y T, Sun L T, Liu M 2012 Adv. Mater. 24 1844

    [55]

    Celano U, Goux L, Belmonte A, Opsomer K, Franquet A, Schulze A, Detavernier C, Richard O, Bender H, Jurczak M, Vandervorst W 2014 Nano Lett. 14 2401

    [56]

    Chen J Y, Huang C W, Chiu C H, Huang Y T, Wu W W 2015 Adv. Mater. 27 5028

    [57]

    Park G S, Kim Y B, Park S Y, Li X S, Heo S, Lee M J, Chang M, Kwon J H, Kim M, Chung U I, Dittmann R, Waser R, Kim K 2013 Nature Commun. 4 2382

    [58]

    Miao F, Strachan J P, Yang J J, Zhang M X, Goldfarb I, Torrezan A C, Eschbach P, Kelley R D, Ribeiro G M, Williams R S 2011 Adv. Mater. 23 5633

    [59]

    Chen J Y, Hsin C L, Huang C W, Chiu C H, Huang Y T, Lin S J, Wu W W, Chen L J 2013 Nano Lett. 13 3671

    [60]

    Yang Y C, Gao P, Gaba S, Chang T, Pan X Q, Lu W 2012 Nature Commun. 3 732

    [61]

    Strachan J P, Pickett M D, Yang J J, Aloni S, Kilcoyne A L D, Ribeiro G M, Williams R S 2010 Adv. Mater. 22 3573

    [62]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [63]

    Yang Y, L W, Yao Y, Sun J, Gu C, Gu L, Wang Y, Duan X, Yu R 2014 Sci. Rep. 4 3890

    [64]

    Li C, Gao B, Yao Y, Guan X X, Shen X, Wang Y G, Huang P, Liu L F, Liu X Y, Li J J, Gu C Z, Kang J F, Yu R C 2017 Adv. Mater. 29 1602976

  • [1]

    Xu T, Sun L T 2015 Small 11 3247

    [2]

    Hofmann S, Sharma R, Wirth C T, Sodi F C, Ducati C, Kasama T, Borkowski R E D, Drucker J, Bennett P, Robertson J 2008 Nature Mater. 7 372

    [3]

    Kodambaka S, Tersoff J, Reuter M C, Ross F M 2007 Science 316 729

    [4]

    Wang L H, Teng J, Liu P, Hirata A, Ma E, Zhang Z, Chen M W, Han X D 2014 Nat. Commun. 5 4402

    [5]

    Hannon J B, Kodambaka S, Ross F M, Tromp R M 2006 Nature 440 69

    [6]

    Ross F M, Tersoff J, Reuter M C 2005 Phys. Rev. Lett. 95 146104

    [7]

    Wang L H, Han X D, Liu P, Yue Y H, Zhang Z, Ma E 2010 Phys. Rev. Lett. 105 135501

    [8]

    Gamalski A D, Ducati C, Hofmann S J 2011 Phys. Chem. C 115 4413

    [9]

    Huang J Y, Chen S, Wang Z Q, Kempa K, Wang Y M, Jo S H, Chen G, Dresselhaus M S, Ren Z F 2006 Nature 439 281

    [10]

    Poncharal P, Wang Z L, Ugarte D, de Heer W A 1999 Science 283 1513

    [11]

    Filleter T, Bernal R, Li S, Espinosa H D 2011 Adv. Mater. 23 2855

    [12]

    Han X D, Wang L H, Yue Y H, Zhang Z 2015 Ultramicroscopy 151 94

    [13]

    Huang J Y, Zhong L, Wang C M, Sullivan J P, Xu W, Zhang L Q, Mao S X, Hudak N S, Liu X H, Subramanian A, Fan H Y, Qi L A, Kushima A, Li J 2010 Science 330 1515

    [14]

    Zhu C Y, Xu F, Min H H, Huang Y, Xia W W, Wang Y T, Xu Q Y, Gao P, Sun L T 2017 Adv. Funct. Mater. 27 1606163

    [15]

    Cha D, Ahn S J, Park S Y, Horii H, Kim D H, Kim Y K, Park S O, Jung U I, Kim M J, Kim J 2009 2009 Symposium on VLSI Technology Honolulu, USA, June 16-18, 2009 p204

    [16]

    Kwon D K, Kim K M, Jang J H, Jeon J M, Lee M H, Kim G H, Li X S, Park G S, Lee B, Han S, Kim M, Hwang C S 2010 Nat. Nanotechnol. 5 148

    [17]

    Lehmann M, Lichte H 2002 Microsc. Microanal. 8 447

    [18]

    Li H Y, Tee B C K, Cha J J, Cui Y, Chung J W, Lee S Y, Bao Z N 2012 J. Am. Chem. Soc. 134 2760

    [19]

    Makarova T L 2001 Semiconductors 35 243

    [20]

    Dekker C 1999 Phys. Today 52 22

    [21]

    Ogawa K, Kato T, Ikegami A, Tsuji H, Aoki N, Ochiai Y, Bird J P 2006 Appl. Phys. Lett. 88 112109

    [22]

    Nigam A, Schwabegger G, Ulla M, Ahmed R, Fishchuk I I, Kadashchuk A, Simbrunner C, Sitter H, Premaratne M, Rao V R 2012 Appl. Phys. Lett. 101 083305

    [23]

    Xing Y J, Jing G Y, Xu J, Yu D P, Liu H B, Li Y L 2005 Appl. Phys. Lett. 87 263117

    [24]

    Mikawa M, Kato H, Okumura M, Narazaki M, Kanazawa Y, Miwa N, Shinohara H 2001 Bioconjugate Chem. 12 510

    [25]

    Yoo C S, Nellis W J 1991 Science 254 1489

    [26]

    Minato J, Miyazawa K 2006 Diamond Relat. Mater. 15 1151

    [27]

    Liu H, Li Y, Jiang L, Luo H, Xiao S, Fang H, Li H, Zhu D, Yu D, Xu J, Xiang B 2002 J. Am. Chem. Soc. 124 13370

    [28]

    Minato J I, Miyazawa K, Suga T 2005 Sci. Technol. Adv. Mat. 6 272

    [29]

    Asaka K, Nakayama T, Miyazawa K, Saito Y 2012 Carbon 50 1209

    [30]

    Yang Y, Niu N N, Li C, Yao Y, Piao G Z, Yu R C 2012 Nanoscale 4 7460

    [31]

    Li C, Wang B Z, Yao Y, Piao G Z, Gu L, Wang Y G, Duan X F, Yu R C 2014 Nanoscale 6 6585

    [32]

    Wang L, Liu B B, Li H, Yang W G, Ding Y, Sinogeikin S V, Meng Y, Liu Z X, Zeng X C, Mao W L 2012 Science 337 825

    [33]

    Baik S J, Lim K S 2011 2011 IEEE International Reliability Physics Symposium (IRPS) Monterey, USA, April 10-14, 2011 p6B.4.1

    [34]

    Lwin Z Z, Pey K L, Liu C, Liu Q, Zhang Q, Chen Y N, Singh P K, Mahapatra S 2011 Appl. Phys. Lett. 99 222102

    [35]

    Zhu C X, Xu Z G, Huo Z L, Yang R, Zheng Z W, Cui Y X, Liu J, Wang Y M, Shi D X, Zhang G Y, Li F H, Liu M 2011 Appl. Phys. Lett. 99 223504

    [36]

    Lin Z, Bremond G, Bassani F 2011 Nanoscale Res. Lett. 6 163

    [37]

    Fiorenza P, Polspoel W, Vandervorst W 2006 Appl. Phys. Lett. 88 222104

    [38]

    Yao Y, Li C, Huo Z L, Liu M, Zhu C X, Gu C Z, Duan X F, Wang Y G, Gu L, Yu R C 2013 Nature Commun. 4 2764

    [39]

    Jeno C S, Ranganath T R, Jones H S, Chang T T L 1981 IEDM 27 388

    [40]

    Liang M S, Chang C, Tong Y, Hu C, Brodersen R W 1984 IEEE Trans. Electron Dev. 31 1238

    [41]

    Shibuya K, Dittmann R, Mi S, Waser R 2010 Adv. Mater. 22 411

    [42]

    Dimaria D J, Cartier E, Arnold D 1993 J. Appl. Phys. 73 3367

    [43]

    Su J, Wu E Y 2004 Phys. Rev. Lett. 92 087601

    [44]

    Xiong K, Robertson J 2005 Microelectron. Eng. 80 408

    [45]

    Onishi K, Choi R, Kang C S, Cho H J, Kim Y H, Nich R E, Han J, Krishnan S A, Akbar M S, Lee J C 2003 IEEE Trans. Electron Dev. 50 1517

    [46]

    Houssa M, Pantisano L, Ragnarsson L , Degraeve R, Schram T, Pourtois G, Gendt S D, Groeseneken G, Heyns M M 2006 Mater. Sci. Eng. R 51 37

    [47]

    Zafar S, Kumar A, Gusev E, Cartier E 2005 IEEE Trans. Device Mat. Re. 5 45

    [48]

    Valov I, Linn E, Tappertzhofen S, Schmelzer S, van den Hurk J, Lentz F, Waser R 2013 Nat. Commun. 4 1771

    [49]

    Jang J H, Jung H S, Kim J H, Lee S Y, Hwang C S, Kim M 2011 J. Appl. Phys. 109 023718

    [50]

    Li C, Yao Y, Shen X, Wang Y G, Li J J, Gu C Z, Yu R C, Liu Q, Liu M 2015 Nano Res. 8 3571

    [51]

    Liu Q, Long S B, L H B, Wang W, Niu J B, Huo Z L, Chen J N, Liu M 2010 ACS Nano 4 6162

    [52]

    Tian H, Chen H Y, Gao B, Yu S M, Liang J L, Yang Y, Xie D, Kang J F, Ren T L, Zhang Y G, Wong H S P 2013 Nano Lett. 13 651

    [53]

    Celano U, Goux L, Degraeve R, Fantini A, Richard O, Bender H, Jurczak M, Vandervorst W 2015 Nano Lett. 15 7970

    [54]

    Liu Q, Sun J, L H B, Long S B, Yin K B, Wan N, Li Y T, Sun L T, Liu M 2012 Adv. Mater. 24 1844

    [55]

    Celano U, Goux L, Belmonte A, Opsomer K, Franquet A, Schulze A, Detavernier C, Richard O, Bender H, Jurczak M, Vandervorst W 2014 Nano Lett. 14 2401

    [56]

    Chen J Y, Huang C W, Chiu C H, Huang Y T, Wu W W 2015 Adv. Mater. 27 5028

    [57]

    Park G S, Kim Y B, Park S Y, Li X S, Heo S, Lee M J, Chang M, Kwon J H, Kim M, Chung U I, Dittmann R, Waser R, Kim K 2013 Nature Commun. 4 2382

    [58]

    Miao F, Strachan J P, Yang J J, Zhang M X, Goldfarb I, Torrezan A C, Eschbach P, Kelley R D, Ribeiro G M, Williams R S 2011 Adv. Mater. 23 5633

    [59]

    Chen J Y, Hsin C L, Huang C W, Chiu C H, Huang Y T, Lin S J, Wu W W, Chen L J 2013 Nano Lett. 13 3671

    [60]

    Yang Y C, Gao P, Gaba S, Chang T, Pan X Q, Lu W 2012 Nature Commun. 3 732

    [61]

    Strachan J P, Pickett M D, Yang J J, Aloni S, Kilcoyne A L D, Ribeiro G M, Williams R S 2010 Adv. Mater. 22 3573

    [62]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [63]

    Yang Y, L W, Yao Y, Sun J, Gu C, Gu L, Wang Y, Duan X, Yu R 2014 Sci. Rep. 4 3890

    [64]

    Li C, Gao B, Yao Y, Guan X X, Shen X, Wang Y G, Huang P, Liu L F, Liu X Y, Li J J, Gu C Z, Kang J F, Yu R C 2017 Adv. Mater. 29 1602976

  • [1] 赖占平. 二维辉钼材料及器件研究进展. 物理学报, 2013, 62(5): 056801. doi: 10.7498/aps.62.056801
    [2] 刘军, 周伟昌, 张建福. CdS:Cu一维纳米结构及其光子学特性研究. 物理学报, 2012, 61(20): 206101. doi: 10.7498/aps.61.206101
    [3] 马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳. β-Ga2O3纳米材料的尺寸调控与光致发光特性. 物理学报, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [4] 刘晃清, 王玲玲, 秦伟平. 二氧化锆纳米材料中Eu3+的发光特性. 物理学报, 2004, 53(1): 282-285. doi: 10.7498/aps.53.282
    [5] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响. 物理学报, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [6] 邵元智, 钟伟荣, 任 山, 蔡志苏, 龚 雷. 纳米团聚生长的多重分形谱. 物理学报, 2005, 54(7): 3290-3296. doi: 10.7498/aps.54.3290
    [7] 杨文华, 刘永生, 朱艳燕, 陈静, 杨金焕, 杨正龙. 新型空间硅太阳电池纳米减反射膜系的优化设计. 物理学报, 2009, 58(7): 4992-4996. doi: 10.7498/aps.58.4992
    [8] 邵宇飞, 王绍青. 基于准连续介质方法模拟纳米多晶体Ni中裂纹的扩展. 物理学报, 2010, 59(10): 7258-7265. doi: 10.7498/aps.59.7258
    [9] 程大伟, 包黎红, 张红艳, 潘晓剑, 那仁格日乐, 赵凤岐, 特古斯, 朝洛濛. 蒸发冷凝法制备超细CeB6和SmB6纳米粉末及可见光穿透特性. 物理学报, 2019, 68(24): 246101. doi: 10.7498/aps.68.20191312
    [10] 王疆靖, 邵瑞文, 邓青松, 郑坤. 应变加载下Si纳米线电输运性能的原位电子显微学研究. 物理学报, 2014, 63(11): 117303. doi: 10.7498/aps.63.117303
    [11] 羊新胜, 王 豫, 董 亮, 张 锋, 齐立桢. 纳米WO3块体材料的电致变色效应. 物理学报, 2004, 53(8): 2724-2727. doi: 10.7498/aps.53.2724
    [12] 林志贤, 郭太良, 胡利勤, 姚 亮, 王晶晶, 杨春建, 张永爱, 郑可炉. 四角状氧化锌纳米材料的场致发射平板显示器. 物理学报, 2006, 55(10): 5531-5534. doi: 10.7498/aps.55.5531
    [13] 黎栋栋, 周武. 二维原子晶体的低电压扫描透射电子显微学研究. 物理学报, 2017, 66(21): 217303. doi: 10.7498/aps.66.217303
    [14] 张超, 方粮, 隋兵才, 徐强, 王慧. 基于微芯片的透射电子显微镜的低温纳米精度电子束刻蚀与原位电学输运性质测量. 物理学报, 2014, 63(24): 248105. doi: 10.7498/aps.63.248105
    [15] 马春兰. 高质量规则多孔氧化铝模板的制备. 物理学报, 2004, 53(6): 1952-1955. doi: 10.7498/aps.53.1952
    [16] 熊雨薇, 尹奎波, 文一峰, 辛磊, 姚利兵, 朱重阳, 孙立涛. 纳米氧化锡负极材料锂化反应机理的原位透射电镜研究. 物理学报, 2019, 68(15): 158201. doi: 10.7498/aps.68.20190431
    [17] 阮美玲, 王震遐, 杨锦晴, 王玟珉, 俞国庆. 一些新颖碳纳米结构的高分辨率透射电子显微镜研究. 物理学报, 1999, 48(11): 2092-2097. doi: 10.7498/aps.48.2092
    [18] 邹进, 温才, 李方华, 陈弘. AlSb/GaAs(001)失配位错的高分辨电子显微学研究. 物理学报, 2010, 59(3): 1928-1937. doi: 10.7498/aps.59.1928
    [19] 李方华, 汤栋. 高分辨电子显微学中的赝弱相位物体近似. 物理学报, 1984, 33(8): 1196-1197. doi: 10.7498/aps.33.1196
    [20] 孔庆平, 王翔, 周浩, 倪群慧. 蠕变-疲劳交互作用的电子显微学研究. 物理学报, 1986, 35(8): 1091-1094. doi: 10.7498/aps.35.1091
  • 引用本文:
    Citation:
计量
  • 文章访问数:  483
  • PDF下载量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-18
  • 修回日期:  2018-05-10
  • 刊出日期:  2018-06-20

纳米材料及HfO2基存储器件的原位电子显微学研究

    基金项目: 

    国家重点研发计划(批准号:2016YFA0300701)、国家重点基础研究发展计划(批准号:2013CB932904,2012CB932302,2010CB934202)和国家自然科学基金(批准号:11374343,61421005,11574376,11174336,61334007,10974235,11274365)资助的课题.

摘要: 总结了我们将原位技术和透射电子显微学分析方法相结合,针对纳米材料和器件的结构、形貌、成分以及电势分布等物理性质的动态行为所开展的综合物性表征和分析工作.主要成果有:揭示了C60纳米晶须在焦耳热作用下的结构相变路径;观察到了电荷俘获存储器中的电荷存储位置以及栅极电压诱导的氧空位缺陷;研究了阻变存储器中氧空位通道的形成过程以及导电通道的开关机理.这些成果不但有助于深入理解纳米材料和器件相关功能的物理机理,改善其工作性能,更展示了透射电子显微学在微电子领域强大的研究能力.

English Abstract

参考文献 (64)

目录

    /

    返回文章
    返回