Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Anelastic relaxation and phase transition internal friction properties of La2-x NdxCuO4+δ(0.1≤x≤1.2) compounds

Wu Xiu-Sheng He Qing Yang Chun-Li Chen Zhi-Jun Chen Chu-Sheng Liu Wei

Anelastic relaxation and phase transition internal friction properties of La2-x NdxCuO4+δ(0.1≤x≤1.2) compounds

Wu Xiu-Sheng, He Qing, Yang Chun-Li, Chen Zhi-Jun, Chen Chu-Sheng, Liu Wei
PDF
Get Citation
  • The low-frequency internal frictions of La2-xNdi>xCuO4+δ(0.1≤x≤1.2) compounds are measured. The results show that the relaxation internal friction peak related to the excess oxygen atoms appears around 250K with 0.1≤x≤1.0.And the peak becomes higher with the value of x increasing for 0.1≤x≤0.4 and all these compounds have orthorhombic structures. When 0.5≤x≤1.0, the compounds have all tetragonal structures on a macro scale and the peak reduces as the value of x increases. However, the sample with x=1.2 exhibits tetragonal structure but the relaxation internal friction peak is not found. Further more, when 0.1≤x≤0.8, there exists a phase transition internal friction peak around 550K. The transition temperature shifts toward high temperature zone as the value of x increases and relative shear modulus M is enlarged. But for x=1.0 and 1.2, there appears no phase transition internal friction peak in the measurement range. We find that all these phase transition internal friction peaks are related to the transition between the orthorhombic structure and the tetragonal structure.
    • Funds:
    [1]

    Rial C, Morán E, Alario-Franco M A, Amador U, Andersen N H 1997 Physica C 288 91

    [2]

    Wilhelm H, Cros C, Reny E,Demazeau G, Hanfland M 2000 J. Solid. State. Chem. 151 231

    [3]

    Zhang H L, Liu W, Li D C, Wu X S, Chen C S 2004 Acta. Phys. Sin. 53 3834 (in Chinese) [张华力、刘 卫、李栋才、吴修胜、陈初升 2004 物理学报 53 3834]

    [4]

    Yang C L, Wu X S, Chen Z J, Gao H Y, Liu W 2009 Mat. Sci. Eng. B-Solid.163 40

    [5]

    Nowick A S, Berry B S 1972 Anelastic relaxation in crystalline solids (Academic Press New York)

    [6]

    Shen H M, Xu Z R, Zhu J S, Yang Z J, Wang Y N 1982 Acta. Phys. Sin. 31 1449 (in Chinese) [沈惠敏、许自然、朱劲松、杨照金、王业宁 1982物理学报 31 1449]

    [7]

    Fang Q F, Ge T S 1993 Acta. Phys. Sin. 42 458 (in Chinese) [方前锋、葛庭燧 1993 物理学报 42 458]

    [8]

    Fang Q F 1997 Acta. Phys. Sin. 46 536 (in Chinese) [方前锋1997 物理学报 46 536]

    [9]

    Liang Y F, Shui J P, Chen G, Zhu Z G 2000 Acta. Phys. Sin. 49 105 (in Chinese) [梁云峰、水嘉鹏、陈 刚、朱震刚 2000 物理学报 49 105]

    [10]

    Wang Q Z, Lu D M, Cui C X, Han F S 2008 Acta. Phys. Sin. 57 7083 (in Chinese) [王清周、陆东梅、崔春翔、韩福生 2008 物理学报 57 7083] 〖11] Sugai S, Adachi T, Sugiura K, Takahashi T, Obara K, Takayanagi Y, Koike Y 2009 J. Supercond. Nov. Magn.22 313

    [11]

    Matsuda M, Hiraka H, Fujita M, Ohta S, Wakimoto S, Yamada K 2008 J. Phys. Chem. Solids. 69 3181

    [12]

    Fujita M, Goka H, Adachi T, Koile Y, Yamada K 2005 Physica C 431 257

    [13]

    Pletnev R N, Yurieva é I, Verkhovskii S V, Bazuev G V 2005 J. Struct. Chem. 59 46

    [14]

    Odier P, Municken M, Crespin M, Dubois F, Mouron P, Choisnet J 2002 J. Mater. Chem. 12 1370

    [15]

    Chen Z J 2009 MS Thesis (Hefei: University of Science and Technology of China) (in Chinese) [陈志军2009 硕士学位论文 (合肥:中国科学技术大学)]

    [16]

    Liu W, Liu Y, Wen Y T, Qian Y T 1994 Chinese Sci. Bull. 39 222 (in Chinese) [刘 卫、刘 奕、文亦汀、钱逸泰 1994 科学通报 39 222]

    [17]

    Zhang H L, Wu X S, Chen C S, Liu W 2005 Phys. Rev. B 71 064422

    [18]

    Licia M, Robin G W, John A K 2000 J. Mater. Chem. 10 2349

    [19]

    Cordero F, Grandini C R, Cannelli G 1998 Phys. Rev. B 57 8580

  • [1]

    Rial C, Morán E, Alario-Franco M A, Amador U, Andersen N H 1997 Physica C 288 91

    [2]

    Wilhelm H, Cros C, Reny E,Demazeau G, Hanfland M 2000 J. Solid. State. Chem. 151 231

    [3]

    Zhang H L, Liu W, Li D C, Wu X S, Chen C S 2004 Acta. Phys. Sin. 53 3834 (in Chinese) [张华力、刘 卫、李栋才、吴修胜、陈初升 2004 物理学报 53 3834]

    [4]

    Yang C L, Wu X S, Chen Z J, Gao H Y, Liu W 2009 Mat. Sci. Eng. B-Solid.163 40

    [5]

    Nowick A S, Berry B S 1972 Anelastic relaxation in crystalline solids (Academic Press New York)

    [6]

    Shen H M, Xu Z R, Zhu J S, Yang Z J, Wang Y N 1982 Acta. Phys. Sin. 31 1449 (in Chinese) [沈惠敏、许自然、朱劲松、杨照金、王业宁 1982物理学报 31 1449]

    [7]

    Fang Q F, Ge T S 1993 Acta. Phys. Sin. 42 458 (in Chinese) [方前锋、葛庭燧 1993 物理学报 42 458]

    [8]

    Fang Q F 1997 Acta. Phys. Sin. 46 536 (in Chinese) [方前锋1997 物理学报 46 536]

    [9]

    Liang Y F, Shui J P, Chen G, Zhu Z G 2000 Acta. Phys. Sin. 49 105 (in Chinese) [梁云峰、水嘉鹏、陈 刚、朱震刚 2000 物理学报 49 105]

    [10]

    Wang Q Z, Lu D M, Cui C X, Han F S 2008 Acta. Phys. Sin. 57 7083 (in Chinese) [王清周、陆东梅、崔春翔、韩福生 2008 物理学报 57 7083] 〖11] Sugai S, Adachi T, Sugiura K, Takahashi T, Obara K, Takayanagi Y, Koike Y 2009 J. Supercond. Nov. Magn.22 313

    [11]

    Matsuda M, Hiraka H, Fujita M, Ohta S, Wakimoto S, Yamada K 2008 J. Phys. Chem. Solids. 69 3181

    [12]

    Fujita M, Goka H, Adachi T, Koile Y, Yamada K 2005 Physica C 431 257

    [13]

    Pletnev R N, Yurieva é I, Verkhovskii S V, Bazuev G V 2005 J. Struct. Chem. 59 46

    [14]

    Odier P, Municken M, Crespin M, Dubois F, Mouron P, Choisnet J 2002 J. Mater. Chem. 12 1370

    [15]

    Chen Z J 2009 MS Thesis (Hefei: University of Science and Technology of China) (in Chinese) [陈志军2009 硕士学位论文 (合肥:中国科学技术大学)]

    [16]

    Liu W, Liu Y, Wen Y T, Qian Y T 1994 Chinese Sci. Bull. 39 222 (in Chinese) [刘 卫、刘 奕、文亦汀、钱逸泰 1994 科学通报 39 222]

    [17]

    Zhang H L, Wu X S, Chen C S, Liu W 2005 Phys. Rev. B 71 064422

    [18]

    Licia M, Robin G W, John A K 2000 J. Mater. Chem. 10 2349

    [19]

    Cordero F, Grandini C R, Cannelli G 1998 Phys. Rev. B 57 8580

  • [1] Yang Yong-Xia, Li Yu-Ye, Gu Hua-Guang. Synchronization transition from bursting to spiking and bifurcation mechanism of the pre-Bötzinger complex. Acta Physica Sinica, 2020, 69(4): 040501. doi: 10.7498/aps.69.20191509
    [2] Liu Xiang, Mi Wen-Bo. Structure, Magnetic and Transport Properties of Fe3O4 near Verwey Transition. Acta Physica Sinica, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [3] Liang Jin-Jie, Gao Ning, Li Yu-Hong. Surface effect on \begin{document}${\langle 100 \rangle }$\end{document} interstitial dislocation loop in iron. Acta Physica Sinica, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [4] Wang Jing-Li, Chen Zi-Yu, Chen He-Ming. Design of polarization-insensitive 1 × 2 multimode interference demultiplexer based on Si3N4/SiNx/Si3N4 sandwiched structure. Acta Physica Sinica, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [5] Algethami Obaidallah A (Yi Bi), Li Ge-Tian, Liu Zhu-Hong, Ma Xing-Qiao. Phase transformation, magnetic properties and exchange bias of Heusler alloy Mn50–xCrxNi42Sn8. Acta Physica Sinica, 2020, 69(5): 058102. doi: 10.7498/aps.69.20191551
    [6] Li Chuang, Li Wei-Wei, Cai Li, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Chen Ya-Bo. Flexible nitrogen dioxide gas sensor based on reduced graphene oxide sensing material using silver nanowire electrode. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [7] Effect of Swift Heavy Ions Irradiation on the Microstructure and Current-Carrying Capability in YBa2Cu3O7-δ High Temperature Superconductor Films. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191914
    [8] Preparing GaN nanowires on Al2O3 substrate without catalyst and its optical property research. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191923
    [9] Zou Ping, Lv Dan, Xu Gui-Ying. Microstructure and thermoelectric property of (Bi1–xTbx)2(Te0.9Se0.1)3 fabricated by high pressure sintering technique. Acta Physica Sinica, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
  • Citation:
Metrics
  • Abstract views:  4314
  • PDF Downloads:  731
  • Cited By: 0
Publishing process
  • Received Date:  21 January 2010
  • Accepted Date:  14 March 2010
  • Published Online:  15 November 2010

Anelastic relaxation and phase transition internal friction properties of La2-x NdxCuO4+δ(0.1≤x≤1.2) compounds

  • 1. (1)Department of Materials Science and Engineering, Anhui Institute of Archtecture and Indusstry, Hefei 230026, China; (2)Laboratory of Advanced Functional Materials and Devices, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230022,China

Abstract: The low-frequency internal frictions of La2-xNdi>xCuO4+δ(0.1≤x≤1.2) compounds are measured. The results show that the relaxation internal friction peak related to the excess oxygen atoms appears around 250K with 0.1≤x≤1.0.And the peak becomes higher with the value of x increasing for 0.1≤x≤0.4 and all these compounds have orthorhombic structures. When 0.5≤x≤1.0, the compounds have all tetragonal structures on a macro scale and the peak reduces as the value of x increases. However, the sample with x=1.2 exhibits tetragonal structure but the relaxation internal friction peak is not found. Further more, when 0.1≤x≤0.8, there exists a phase transition internal friction peak around 550K. The transition temperature shifts toward high temperature zone as the value of x increases and relative shear modulus M is enlarged. But for x=1.0 and 1.2, there appears no phase transition internal friction peak in the measurement range. We find that all these phase transition internal friction peaks are related to the transition between the orthorhombic structure and the tetragonal structure.

Reference (19)

Catalog

    /

    返回文章
    返回