Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Full-relativistic multi-configuration self-consistent calculation of atomic structures and physical properties——Construction of “quasi-complete basis sets” and configuration interaction calculations

Cheng Cheng Gao Xiang Zhang Xiao-Le Qing Bo Li Jia-Ming

Full-relativistic multi-configuration self-consistent calculation of atomic structures and physical properties——Construction of “quasi-complete basis sets” and configuration interaction calculations

Cheng Cheng, Gao Xiang, Zhang Xiao-Le, Qing Bo, Li Jia-Ming
PDF
Get Citation
  • Based on the variation principle, many methods have been developed in atomic structure calculations. A high quality complete basis set is essential to the calculation of atomic structures. We present how to construct quasi-complete basis sets through Dirac-Fock calculations and multi-configuration Dirac-Fock self-consistent filed calculations by using the full-relativistic GRASPVU program package, which is based on the multi-configuration Dirac-Fock method. The relativistic configuration interaction calculations are carried out by using the quasi-complete basis sets to adequately consider correlations. The relativistic retardation effect of electromagnetic interactions and the quantum electron dynamic corrections are also taken into account. Our calculation results of He agree well with other theoretical results and experimental results, which validates the feasibility of our calculation scenario. Our calculations are full-relativistic, and can be extended to high Z helium-like ions in which the relativistic effect is important. Our scenario of constructing quasi-complete basis sets can be used in any many-electron atomic system. We calculated the energy levels of Mg and elucidated the mechanism of its interesting fine-structure splittings of 3 3D and 4 3D levels.
    • Funds:
    [1]

    Eidelsberg M, Crifo-Magnant F, Zeippen C J 1981 Astron. Astrophys. Suppl. Ser. 43 455

    [2]

    Dalgarno A 1979 Adv. At. Mol. Phys. 15 37

    [3]

    Kallman T R, Palmeri P 2007 Rev. Mod. Phys. 79 79

    [4]

    Clark R E H, Reiter D H 2005 Nuclear Fusion Research: Understanding Plasma-Surface Interactions(Berlin, Heidelberg:Springer-Verlag) Volume 78

    [5]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W,Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [6]

    Larsson M 1995 Rep. Prog. Phys. 58 1267

    [7]

    Xia J W, Zhan W L, Wei B W, Yuan Y J, Song M T, Zhang W Z, Yang X D, Yuan P,Gao D Q, Zhao H W, Yang X T, Xiao G Q, Man K T, Dang J R, Cai X H, Wang Y F,Tang J Y, Qiao W M, Rao Y N, He Y, Mao L Z, Zhou Z Z 2002 Nucl. Instrum. Meth. A 488 11

    [8]

    Augustin I 2007 Nucl. Instrum. Meth. B 261 1014

    [9]

    Drake G W F, Yan Z C 1992 Phys. Rev. A 46 2378

    [10]

    Mann J B, Johnson W R 1971 Phys. Rev. A 4 41

    [11]

    Grant I P, McKenzie B J 1980 J. Phys. B 13 2671

    [12]

    Grant I P 2006 Relativistic Quantum Theory of Atoms and Molecules (New York: Springer) pp222—228,562—568

    [13]

    Drake G W F 1988 Can. J. Phys. 66 586

    [14]

    Zhang T, Yan Z C, Drake G W F 1996 Phys. Rev. Lett. 77 1715

    [15]

    Drake G W F, Martin W C 1998 Can. J. Phys. 76 679

    [16]

    Fischer C F 1986 Comput. Phys. Rep. 3 273

    [17]

    Grant I P1970 Adv. Phys. 19 747

    [18]

    Brown G E, Ravenhall D G 1951 Proc. R. Soc. London Ser. A 208 552

    [19]

    Sucher J 1980 Phys. Rev. A 22 348

    [20]

    Parpia F A, Fischer C F, Grant I P 1996 Comput. Phys. Commun. 94 249

    [21]

    Peng Y L, Han X Y, Wang M S, Li J M 2005 J. Phys. B 38 3825

    [22]

    Qing B, Chen S H, Gao X, Li J M 2008 Chin. Phys. Lett. 25 2448

    [23]

    Parpia F A, Tong M, Fischer C F 1992 Phys. Rev. A 46 3717

    [24]

    Mohr P J, Plunien G, Soff G 1998 Phys. Rep. 293 227

    [25]

    Fullerton L W, Rinker Jr G A 1976 Phys. Rev. A 13 1283

    [26]

    Pastor P C, Giusfredi G, Natale P D, Hagel G, Mauro C D, Inguscio M 2004 Phys. Rev. Lett. 92 023001

    [27]

    Xie L Y, Dong C Z, Ma X W, Yuan P, Yan J, Qu Y Z 2002 Acta Phys. Sin. 51 1965(in Chinese)[颉录有、董晨钟、马新文、袁 萍、颜 君、曲一至 2002 物理学报 51 1965]

    [28]

    Dall R G, Baldwin K G H, Byron L J, Truscott A G 2008 Phys. Rev. Lett. 100 023001

    [29]

    Burger J M, Lurio A 1971 Phys. Rev. A 3 76

    [30]

    Drake G W F 1979 Phys. Rev. A 19 1387

    [31]

    ach G, Pachucki K 2001 Phys. Rev. A 64 042510

    [32]

    Schiff B, Pekeris C L 1964 Phys. Rev. 134 A638

    [33]

    Zhao P, Lawall J R, Pipkin F M 1991 Phys. Rev. Lett. 66 592

    [34]

    Drake G W F, Nōrtershāuser W, Yan Z C 2005 Can. J. Phys. 83 311

    [35]

    Wang X L, Liu L T, Gao X, Shen C, Li J M 2008 Chin. Phys. Lett. 25 4244

    [36]

    Isaksen S, Anderson A, Anderson T, Ramanujam P S 1979 J. Phys. B 12 893

  • [1]

    Eidelsberg M, Crifo-Magnant F, Zeippen C J 1981 Astron. Astrophys. Suppl. Ser. 43 455

    [2]

    Dalgarno A 1979 Adv. At. Mol. Phys. 15 37

    [3]

    Kallman T R, Palmeri P 2007 Rev. Mod. Phys. 79 79

    [4]

    Clark R E H, Reiter D H 2005 Nuclear Fusion Research: Understanding Plasma-Surface Interactions(Berlin, Heidelberg:Springer-Verlag) Volume 78

    [5]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W,Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [6]

    Larsson M 1995 Rep. Prog. Phys. 58 1267

    [7]

    Xia J W, Zhan W L, Wei B W, Yuan Y J, Song M T, Zhang W Z, Yang X D, Yuan P,Gao D Q, Zhao H W, Yang X T, Xiao G Q, Man K T, Dang J R, Cai X H, Wang Y F,Tang J Y, Qiao W M, Rao Y N, He Y, Mao L Z, Zhou Z Z 2002 Nucl. Instrum. Meth. A 488 11

    [8]

    Augustin I 2007 Nucl. Instrum. Meth. B 261 1014

    [9]

    Drake G W F, Yan Z C 1992 Phys. Rev. A 46 2378

    [10]

    Mann J B, Johnson W R 1971 Phys. Rev. A 4 41

    [11]

    Grant I P, McKenzie B J 1980 J. Phys. B 13 2671

    [12]

    Grant I P 2006 Relativistic Quantum Theory of Atoms and Molecules (New York: Springer) pp222—228,562—568

    [13]

    Drake G W F 1988 Can. J. Phys. 66 586

    [14]

    Zhang T, Yan Z C, Drake G W F 1996 Phys. Rev. Lett. 77 1715

    [15]

    Drake G W F, Martin W C 1998 Can. J. Phys. 76 679

    [16]

    Fischer C F 1986 Comput. Phys. Rep. 3 273

    [17]

    Grant I P1970 Adv. Phys. 19 747

    [18]

    Brown G E, Ravenhall D G 1951 Proc. R. Soc. London Ser. A 208 552

    [19]

    Sucher J 1980 Phys. Rev. A 22 348

    [20]

    Parpia F A, Fischer C F, Grant I P 1996 Comput. Phys. Commun. 94 249

    [21]

    Peng Y L, Han X Y, Wang M S, Li J M 2005 J. Phys. B 38 3825

    [22]

    Qing B, Chen S H, Gao X, Li J M 2008 Chin. Phys. Lett. 25 2448

    [23]

    Parpia F A, Tong M, Fischer C F 1992 Phys. Rev. A 46 3717

    [24]

    Mohr P J, Plunien G, Soff G 1998 Phys. Rep. 293 227

    [25]

    Fullerton L W, Rinker Jr G A 1976 Phys. Rev. A 13 1283

    [26]

    Pastor P C, Giusfredi G, Natale P D, Hagel G, Mauro C D, Inguscio M 2004 Phys. Rev. Lett. 92 023001

    [27]

    Xie L Y, Dong C Z, Ma X W, Yuan P, Yan J, Qu Y Z 2002 Acta Phys. Sin. 51 1965(in Chinese)[颉录有、董晨钟、马新文、袁 萍、颜 君、曲一至 2002 物理学报 51 1965]

    [28]

    Dall R G, Baldwin K G H, Byron L J, Truscott A G 2008 Phys. Rev. Lett. 100 023001

    [29]

    Burger J M, Lurio A 1971 Phys. Rev. A 3 76

    [30]

    Drake G W F 1979 Phys. Rev. A 19 1387

    [31]

    ach G, Pachucki K 2001 Phys. Rev. A 64 042510

    [32]

    Schiff B, Pekeris C L 1964 Phys. Rev. 134 A638

    [33]

    Zhao P, Lawall J R, Pipkin F M 1991 Phys. Rev. Lett. 66 592

    [34]

    Drake G W F, Nōrtershāuser W, Yan Z C 2005 Can. J. Phys. 83 311

    [35]

    Wang X L, Liu L T, Gao X, Shen C, Li J M 2008 Chin. Phys. Lett. 25 4244

    [36]

    Isaksen S, Anderson A, Anderson T, Ramanujam P S 1979 J. Phys. B 12 893

  • [1] Yang Jian-Hui, Fan Qiang, Zhang Jian-Ping. The study of dielectronic recombination (DR) rate coefficient for ground state of Ne-like isoelectronic sequence ions. Acta Physica Sinica, 2012, 61(19): 193101. doi: 10.7498/aps.61.193101
    [2] Yu Geng-Hua, Yan Hui, Gao Dang-Li, Zhao Peng-Yi, Liu Hong, Zhu Xiao-Ling, Yang Wei. Calculationof isotope shift of Mg+ ion by using the relativistic multi-configuration interaction method. Acta Physica Sinica, 2018, 67(1): 013101. doi: 10.7498/aps.67.20171817
    [3] WANG WAN-JUE. RELATIVISTIC MULTICONFIGURATION DIRAC-FOCK CALCULATION OF FINE-STRUCTURE ENERGY LEVELS AND TRANSITION WAVELENGTHS FOR N-LIKE KXIII, CaXIV, ScXV AND TiXVI. Acta Physica Sinica, 1992, 41(5): 726-731. doi: 10.7498/aps.41.726
    [4] ZHAO ZHONG-XIN, LI JIA-MING. NON- RELATIVISTIC AND RELATIVISTIC ATOMIC CONFIGURATION INTERACTION THEORY EXCITATION ENERGY AND RADIATIVE TRANSITION PROBABILITY. Acta Physica Sinica, 1985, 34(11): 1469-1478. doi: 10.7498/aps.34.1469
    [5] Yu Geng-Hua, Liu Hong, Zhao Peng-Yi, Xu Bing-Ming, Gao Dang-Li, Zhu Xiao-Ling, Yang Wei. Theoretical calculations on isotope shifts of Mg I by using relativistic multiconfiguration Dirac-Hartree-Fock method. Acta Physica Sinica, 2017, 66(11): 113101. doi: 10.7498/aps.66.113101
    [6] Xu Yan, Fan Wei, Ji Yan-Jun, Song Ren-Gang, Chen Bing, Zhao Zhen-Hua, Chen Da. Effective field theory approach to the weakly interacting bose gas. Acta Physica Sinica, 2014, 63(4): 040501. doi: 10.7498/aps.63.040501
    [7] Wang Jie-Min, Sun Jin-Feng. Multireference configuration interaction study on spectroscopic parameters and molecular constants of AsN(X1 +) radical. Acta Physica Sinica, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [8] Zhang Bin, Zhao Jian, Zhao Zeng-Xiu. Multiconfiguration time-dependent Hartree-Fock treatment of electron correlation in strong-field ionization of H2 molecules. Acta Physica Sinica, 2018, 67(10): 103301. doi: 10.7498/aps.67.20172701
    [9] TAN MING-LIANG, ZHU ZHENG-HE, ZHAO YONG-KUN, CHEN XIAO-FENG. RELATIVISTIC MULTICONFIGURATION CALCULATION OF FINE-STRUCTURE ENERGY LEVELS AND TRANSITIONS FOR Cu-LIKE Au50+. Acta Physica Sinica, 1996, 45(10): 1609-1614. doi: 10.7498/aps.45.1609
    [10] Huang Shi-Zhong, Ma Kun, Wu Chang-Yi, Ni Xiu-Bo. Energy and relativistic correction of the 1sns configuration in helium. Acta Physica Sinica, 2008, 57(9): 5469-5475. doi: 10.7498/aps.57.5469
  • Citation:
Metrics
  • Abstract views:  3537
  • PDF Downloads:  752
  • Cited By: 0
Publishing process
  • Received Date:  19 June 2009
  • Accepted Date:  20 October 2009
  • Published Online:  15 July 2010

Full-relativistic multi-configuration self-consistent calculation of atomic structures and physical properties——Construction of “quasi-complete basis sets” and configuration interaction calculations

  • 1. (1)Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China; (2)Key Laboratory of Atomic and Molecular Nano Sciences of Ministry of Education, Department of Physics, Tsinghua University, Beijing 100084, China; (3)Key Laboratory of Atomic and Molecular Nano Sciences of Ministry of Education, Department of Physics, Tsinghua University, Beijing 100084, China; Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract: Based on the variation principle, many methods have been developed in atomic structure calculations. A high quality complete basis set is essential to the calculation of atomic structures. We present how to construct quasi-complete basis sets through Dirac-Fock calculations and multi-configuration Dirac-Fock self-consistent filed calculations by using the full-relativistic GRASPVU program package, which is based on the multi-configuration Dirac-Fock method. The relativistic configuration interaction calculations are carried out by using the quasi-complete basis sets to adequately consider correlations. The relativistic retardation effect of electromagnetic interactions and the quantum electron dynamic corrections are also taken into account. Our calculation results of He agree well with other theoretical results and experimental results, which validates the feasibility of our calculation scenario. Our calculations are full-relativistic, and can be extended to high Z helium-like ions in which the relativistic effect is important. Our scenario of constructing quasi-complete basis sets can be used in any many-electron atomic system. We calculated the energy levels of Mg and elucidated the mechanism of its interesting fine-structure splittings of 3 3D and 4 3D levels.

Reference (36)

Catalog

    /

    返回文章
    返回