Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation of Raman light source with an anti-reflection-coated edge-emitting laser diode in an external cavity

Zhang Yan-Feng Li Gang Zhang Yu-Chi Zhang Peng-Fei Wang Jun-Min Zhang Tian-Cai

Generation of Raman light source with an anti-reflection-coated edge-emitting laser diode in an external cavity

Zhang Yan-Feng, Li Gang, Zhang Yu-Chi, Zhang Peng-Fei, Wang Jun-Min, Zhang Tian-Cai
PDF
Get Citation
  • Phase locked two laser beams with a tunable and controllable frequency difference in a range of several GHz play a major role in the stimulated Raman transition, coherent population trapping, quantum states preparation and other quantum manipulation researches. We demonstrate such leaser beams with a tunable frequency difference in a range of 6.09.3GHz. In particular, the frequency differences of 6.835GHz and 9.192GHz corresponding to the ground state's hyperfine splitting in Rb87 and Cs133 respectively are realized experimentally. The power of the modulated beam is measured to be 6.87mW. With an antireflection-coated edge-emitting diode placed in an external cavity, we can suppress the carrier completely when the modulation frequency is lower than 4.0GHz by adjusting the external cavity length, the temperature, the current of the diode, and the power of the modulation. When the modulation is higher than 4.0GHz we cannot fully suppress the carrier, but we can also obtain the laser beams each with a high modulation depth due to modulation enhancement by external cavity resonance.
    • Funds:
    [1]

    Adelbert Owyoung, Jones E D 1977 Opt. Lett. 1 152

    [2]
    [3]

    Kasevitch M, Chu S 1992 Phys. Rev. Lett. 69 1741

    [4]

    Lee H J, Adams C S, Kasevitch M, Chu S 1996 Phys. Rev.Lett. 76 2658

    [5]
    [6]

    Weiss D S, Young B C, Chu S 1993 Phys. Rev. Lett. 70 2706

    [7]
    [8]
    [9]

    Yavuz D D, Kulatunga P B, Urban E, Johnson T A, Proite N, Henage T, Walker T G, Saffman M 2006 Phys. Rev. Lett. 96 063001

    [10]

    Bergmann K, Theuer H, Shore B W. 1998 Reviews of Modern Physics 70 1003

    [11]
    [12]
    [13]

    Schiemann S, Kuhn A, Steuerwald S, Bergmann K 1993 Phys. Rev. Lett. 71 3637

    [14]
    [15]

    Vitanov N V, Fleischhauer M, Shore B W, Bergmann K 2001 Adv. At. Mol. Opt. Phys. 46 55

    [16]
    [17]

    Vitanov N V, Halfmann T, Shore B W, Bergmann K 2001 Annu. Rev. Phys. Chem. 52 763

    [18]
    [19]

    Markus Hijlkema,Bernhard Weber, Specht H P 2007 Nat. Phys. 03 253

    [20]
    [21]

    Darquie B, Jones M P A, Dingjan J, Beugnon J, Bergamini S, Sortais Y, Messin G, Browaeys A, Grangier P 2005 Science 309 454

    [22]

    Bouyer P, Gustavson T L, Haritos K G, Kasevich M A 1993 Opt.Lett. 18 649

    [23]
    [24]

    Szymaniec K, Ghezali S, Coghnet L, Clairon A 1997 Opt. Commun. 144 51

    [25]
    [26]
    [27]

    Santarelli G, Clairon A, Lea S N, Tino G 1994 Opt. Commun. 104 339

    [28]
    [29]

    Snadden M J, Clarke R B M, Riis E 1997 Opt. Lett. 22 892

    [30]

    Ringot J, Lecoq Y, Garreau J C, Szriftgiser P 1999 Eur. Phys. J. D 7 285

    [31]
    [32]

    Affolderbach C, Nagel A, Knappe S, Jung C, Wiedenmann D, Wynands R 2000 Appl. Phys. B Lasers Opt. 70 407

    [33]
    [34]
    [35]

    Waxman A,Givon M, Aviv G, Groswasser D, Folman R 2009 Appl. Phys. B 95 301

    [36]
    [37]

    Liu S P, Zhang Y C, Zhang P F, Li G, Wang J M, Zhang T C 2009 Acta Phys. Sin. 58 285(in Chinese)[刘四平、张玉驰、张鹏飞、李 刚、王军民、张天才 2009 物理学报 58 285]

    [38]

    Zhang Y C, Wang X Y, Li G, Wang J M, Zhang T C 2007 Acta Phys. Sin. 56 2202 (in Chinese)[张玉驰,王晓勇,李 刚,王军民,张天才 2007 物理学报 56 2202]

    [39]
  • [1]

    Adelbert Owyoung, Jones E D 1977 Opt. Lett. 1 152

    [2]
    [3]

    Kasevitch M, Chu S 1992 Phys. Rev. Lett. 69 1741

    [4]

    Lee H J, Adams C S, Kasevitch M, Chu S 1996 Phys. Rev.Lett. 76 2658

    [5]
    [6]

    Weiss D S, Young B C, Chu S 1993 Phys. Rev. Lett. 70 2706

    [7]
    [8]
    [9]

    Yavuz D D, Kulatunga P B, Urban E, Johnson T A, Proite N, Henage T, Walker T G, Saffman M 2006 Phys. Rev. Lett. 96 063001

    [10]

    Bergmann K, Theuer H, Shore B W. 1998 Reviews of Modern Physics 70 1003

    [11]
    [12]
    [13]

    Schiemann S, Kuhn A, Steuerwald S, Bergmann K 1993 Phys. Rev. Lett. 71 3637

    [14]
    [15]

    Vitanov N V, Fleischhauer M, Shore B W, Bergmann K 2001 Adv. At. Mol. Opt. Phys. 46 55

    [16]
    [17]

    Vitanov N V, Halfmann T, Shore B W, Bergmann K 2001 Annu. Rev. Phys. Chem. 52 763

    [18]
    [19]

    Markus Hijlkema,Bernhard Weber, Specht H P 2007 Nat. Phys. 03 253

    [20]
    [21]

    Darquie B, Jones M P A, Dingjan J, Beugnon J, Bergamini S, Sortais Y, Messin G, Browaeys A, Grangier P 2005 Science 309 454

    [22]

    Bouyer P, Gustavson T L, Haritos K G, Kasevich M A 1993 Opt.Lett. 18 649

    [23]
    [24]

    Szymaniec K, Ghezali S, Coghnet L, Clairon A 1997 Opt. Commun. 144 51

    [25]
    [26]
    [27]

    Santarelli G, Clairon A, Lea S N, Tino G 1994 Opt. Commun. 104 339

    [28]
    [29]

    Snadden M J, Clarke R B M, Riis E 1997 Opt. Lett. 22 892

    [30]

    Ringot J, Lecoq Y, Garreau J C, Szriftgiser P 1999 Eur. Phys. J. D 7 285

    [31]
    [32]

    Affolderbach C, Nagel A, Knappe S, Jung C, Wiedenmann D, Wynands R 2000 Appl. Phys. B Lasers Opt. 70 407

    [33]
    [34]
    [35]

    Waxman A,Givon M, Aviv G, Groswasser D, Folman R 2009 Appl. Phys. B 95 301

    [36]
    [37]

    Liu S P, Zhang Y C, Zhang P F, Li G, Wang J M, Zhang T C 2009 Acta Phys. Sin. 58 285(in Chinese)[刘四平、张玉驰、张鹏飞、李 刚、王军民、张天才 2009 物理学报 58 285]

    [38]

    Zhang Y C, Wang X Y, Li G, Wang J M, Zhang T C 2007 Acta Phys. Sin. 56 2202 (in Chinese)[张玉驰,王晓勇,李 刚,王军民,张天才 2007 物理学报 56 2202]

    [39]
  • [1] Wu Mei-Mei, Zhang Chao, Zhang Can, Sun Qian-Qian, Liu Mei. Surface enhanced Raman scattering characteristics of three-dimensional pyramid stereo composite substrate. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [2] Research on few-mode PAM regenerator based on nonlinear optical fiber loop mirror. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191858
    [3] Wang Xiao-Lei, Zhao Jie-Hui, Li Miao, Jiang Guang-Ke, Hu Xiao-Xue, Zhang Nan, Zhai Hong-Chen, Liu Wei-Wei. Tight focus and field enhancement of terahertz waves using a thickness-graded silver-plated strip probe based on spoof surface plasmons. Acta Physica Sinica, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [4] Zhang Ya-Nan, Zhan Nan, Deng Ling-Ling, Chen Shu-Fen. Efficiency improvement in solution-processed multilayered phosphorescent white organic light emitting diodes by silica coated silver nanocubes. Acta Physica Sinica, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [5] High-speed and large-scale light-sheet microscopy with electrically tunable lens. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191908
    [6] Liao Tian-Jun, Lü Yi-Xiang. Thermodynamic limit and optimal performance prediction of thermophotovoltaic energy conversion devices. Acta Physica Sinica, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
  • Citation:
Metrics
  • Abstract views:  3076
  • PDF Downloads:  600
  • Cited By: 0
Publishing process
  • Received Date:  01 December 2010
  • Accepted Date:  10 December 2010
  • Published Online:  15 October 2011

Generation of Raman light source with an anti-reflection-coated edge-emitting laser diode in an external cavity

  • 1. State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China

Abstract: Phase locked two laser beams with a tunable and controllable frequency difference in a range of several GHz play a major role in the stimulated Raman transition, coherent population trapping, quantum states preparation and other quantum manipulation researches. We demonstrate such leaser beams with a tunable frequency difference in a range of 6.09.3GHz. In particular, the frequency differences of 6.835GHz and 9.192GHz corresponding to the ground state's hyperfine splitting in Rb87 and Cs133 respectively are realized experimentally. The power of the modulated beam is measured to be 6.87mW. With an antireflection-coated edge-emitting diode placed in an external cavity, we can suppress the carrier completely when the modulation frequency is lower than 4.0GHz by adjusting the external cavity length, the temperature, the current of the diode, and the power of the modulation. When the modulation is higher than 4.0GHz we cannot fully suppress the carrier, but we can also obtain the laser beams each with a high modulation depth due to modulation enhancement by external cavity resonance.

Reference (39)

Catalog

    /

    返回文章
    返回