Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pressure induced band-gap changes in (Ba0.5Sr0.5)TiO3 (BST) from first-principles calculations

Deng Yang Wang Ru-Zhi Xu Li-Chun Fang Hui Yan Hui

Pressure induced band-gap changes in (Ba0.5Sr0.5)TiO3 (BST) from first-principles calculations

Deng Yang, Wang Ru-Zhi, Xu Li-Chun, Fang Hui, Yan Hui
PDF
Get Citation
  • The high-pressure behaviors of crystalline (Ba0.5Sr0.5)TiO3 (BST) are investigated, using the first-principles calculations based on the density functional theory. The results show that as pressure increases, the band gap of BST first increases and peaks at around 55 GPa, and then gradually decreases. The analysis of density of states shows that in the low-pressure region (0P55 GPa), the increase in band gap is due to the formation of anti-bonding states and bonding states in the conduction band and valence band, respectively. In the high-pressure region (P55 GPa), the delocalization phenomenon in dominant due to the fact that the delocaligation action exceeds the force of bonding state and anti-bonding state, which results in the decrease of the band gap.
    • Funds:
    [1]

    Akbas M A, Davies P K 1998 J. Am. Ceram. Soc. 81 670

    [2]
    [3]

    Walizer L, Lisenkov S, Bellaiche L 2006 Phys. Rev. B 73 144105

    [4]

    Bao P, Jackson T J, Wang X, Lancaster M J 2008 J. Phys. D-Appl. Phys. 41 063001

    [5]
    [6]

    Ma Y M, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M, Prakapenka V 2009 Nature 458 182

    [7]
    [8]

    Guennou M, Bouvier P, Kreisel J, Machon D 2010 Phys. Rev. B 81 134101

    [9]
    [10]
    [11]

    Ganesh P, Cohen R E 2009 J. Phys. Condes. Matter 21 064225

    [12]

    Stengel M, Vanderbilt D, Spaldin N A 2009 Nat. Mater. 8 392

    [13]
    [14]

    He J P, Lu W Z, Wang X H 2009 Ferroelectrics 388 172

    [15]
    [16]

    Zhu W H, Xiao H M 2010 Struct. Chem. 21 657

    [17]
    [18]
    [19]

    Zhu W H, Zhang X W, Zhu W, Xiao H M 2008 Phys. Chem. Chem. Phys. 10 7318

    [20]
    [21]

    Zhu J L, Jin C Q, Cao W W, Wang X H 2008 Appl. Phys. Lett. 92 242901

    [22]
    [23]

    Tse J S, Klug D D, Patchkovskii S, Ma Y M, Dewhurst J K 2006 J. Phys. Chem. B 110 3721

    [24]

    Lemanov V V, Smirnova E P, Syrnikov P P, Tarakanov E A 1996 Phys. Rev. B 54 3151

    [25]
    [26]
    [27]

    Menoret C, Kiat J M, Dkhil B, Dunlop M, Dammak H, Hernandez O 2002 Phys. Rev. B 65 224104

    [28]
    [29]

    Ostapchuk T, Petzelt J, Hlinka J, Bovtun V, Kuzel P, Ponomareva I, Lisenkov S, Bellaiche L, Tkach A, Vilarinho P 2009 J. Phys. Condes. Matter 21 474215

    [30]

    Wang Y X 2005 Solid State Commun. 135 290

    [31]
    [32]

    Wang Y X 2008 Phys. Status Solidi B-Basic Solid State Phys. 245 1147

    [33]
    [34]
    [35]

    Guennou M, Bouvier P, Krikler B, Kreisel J, Haumont R, Garbarino G 2010 Phys. Rev. B 82 054115

    [36]

    Yang L, Ma Y M, Iitaka T, Tse J S, Stahl K, Ohishi Y, Wang Y, Zhang R W, Liu J F, Mao H K, Jiang J Z 2006 Phys. Rev. B 74 245209

    [37]
    [38]
    [39]

    Xiao W S, Tan D Y, Xiong X L, Liu J, Xu J A 2010 Proc. Natl. Acad. Sci. USA 107 14026

    [40]
    [41]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [42]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [43]
    [44]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [45]
    [46]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [47]
    [48]

    Seo S S A, Lee H N 2009 Appl. Phys. Lett. 94 232904

    [49]
    [50]

    Johnston K, Huang X Y, Neaton J B, Rabe K M 2005 Phys. Rev. B 71 100103

    [51]
    [52]

    Jia C H, Chen Y H, Zhou X L, Yang A L, Zheng G L, Liu X L, Yang S Y, Wang Z G 2010 Appl. Phys. A-Mater. Sci. Process. 99 511

    [53]
    [54]

    Wang J, Xiang J H, Duo S W, Li W K, Li M S, Bai L Y 2009 J. Mater. Sci. Mater. Electron. 20 319

    [55]
    [56]
    [57]

    Chen W K, Cheng C M, Huang J Y, Hsieh W F, Tseng T Y 2000 J. Phys. Chem. Solids 61 969

    [58]
    [59]

    Cohen R E 1992 Nature 358 136

    [60]
    [61]

    Zhu W, Zhang X, Xiao H 2008 Phys. Chem. Chem. Phys. 10 7318

    [62]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [63]
    [64]

    Wei X, Xu G, Ren Z H, Wang Y G, Shen G, Han G R 2008 J. Cryst. Growth 310 4132

    [65]
    [66]
    [67]

    Todorova M, Reuter K, Scheffler M 2004 J. Phys. Chem. B 108 14477

    [68]
    [69]

    Morgan B J, Watson G W 2010 J. Phys. Chem. C 114 2321

  • [1]

    Akbas M A, Davies P K 1998 J. Am. Ceram. Soc. 81 670

    [2]
    [3]

    Walizer L, Lisenkov S, Bellaiche L 2006 Phys. Rev. B 73 144105

    [4]

    Bao P, Jackson T J, Wang X, Lancaster M J 2008 J. Phys. D-Appl. Phys. 41 063001

    [5]
    [6]

    Ma Y M, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M, Prakapenka V 2009 Nature 458 182

    [7]
    [8]

    Guennou M, Bouvier P, Kreisel J, Machon D 2010 Phys. Rev. B 81 134101

    [9]
    [10]
    [11]

    Ganesh P, Cohen R E 2009 J. Phys. Condes. Matter 21 064225

    [12]

    Stengel M, Vanderbilt D, Spaldin N A 2009 Nat. Mater. 8 392

    [13]
    [14]

    He J P, Lu W Z, Wang X H 2009 Ferroelectrics 388 172

    [15]
    [16]

    Zhu W H, Xiao H M 2010 Struct. Chem. 21 657

    [17]
    [18]
    [19]

    Zhu W H, Zhang X W, Zhu W, Xiao H M 2008 Phys. Chem. Chem. Phys. 10 7318

    [20]
    [21]

    Zhu J L, Jin C Q, Cao W W, Wang X H 2008 Appl. Phys. Lett. 92 242901

    [22]
    [23]

    Tse J S, Klug D D, Patchkovskii S, Ma Y M, Dewhurst J K 2006 J. Phys. Chem. B 110 3721

    [24]

    Lemanov V V, Smirnova E P, Syrnikov P P, Tarakanov E A 1996 Phys. Rev. B 54 3151

    [25]
    [26]
    [27]

    Menoret C, Kiat J M, Dkhil B, Dunlop M, Dammak H, Hernandez O 2002 Phys. Rev. B 65 224104

    [28]
    [29]

    Ostapchuk T, Petzelt J, Hlinka J, Bovtun V, Kuzel P, Ponomareva I, Lisenkov S, Bellaiche L, Tkach A, Vilarinho P 2009 J. Phys. Condes. Matter 21 474215

    [30]

    Wang Y X 2005 Solid State Commun. 135 290

    [31]
    [32]

    Wang Y X 2008 Phys. Status Solidi B-Basic Solid State Phys. 245 1147

    [33]
    [34]
    [35]

    Guennou M, Bouvier P, Krikler B, Kreisel J, Haumont R, Garbarino G 2010 Phys. Rev. B 82 054115

    [36]

    Yang L, Ma Y M, Iitaka T, Tse J S, Stahl K, Ohishi Y, Wang Y, Zhang R W, Liu J F, Mao H K, Jiang J Z 2006 Phys. Rev. B 74 245209

    [37]
    [38]
    [39]

    Xiao W S, Tan D Y, Xiong X L, Liu J, Xu J A 2010 Proc. Natl. Acad. Sci. USA 107 14026

    [40]
    [41]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [42]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [43]
    [44]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [45]
    [46]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [47]
    [48]

    Seo S S A, Lee H N 2009 Appl. Phys. Lett. 94 232904

    [49]
    [50]

    Johnston K, Huang X Y, Neaton J B, Rabe K M 2005 Phys. Rev. B 71 100103

    [51]
    [52]

    Jia C H, Chen Y H, Zhou X L, Yang A L, Zheng G L, Liu X L, Yang S Y, Wang Z G 2010 Appl. Phys. A-Mater. Sci. Process. 99 511

    [53]
    [54]

    Wang J, Xiang J H, Duo S W, Li W K, Li M S, Bai L Y 2009 J. Mater. Sci. Mater. Electron. 20 319

    [55]
    [56]
    [57]

    Chen W K, Cheng C M, Huang J Y, Hsieh W F, Tseng T Y 2000 J. Phys. Chem. Solids 61 969

    [58]
    [59]

    Cohen R E 1992 Nature 358 136

    [60]
    [61]

    Zhu W, Zhang X, Xiao H 2008 Phys. Chem. Chem. Phys. 10 7318

    [62]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [63]
    [64]

    Wei X, Xu G, Ren Z H, Wang Y G, Shen G, Han G R 2008 J. Cryst. Growth 310 4132

    [65]
    [66]
    [67]

    Todorova M, Reuter K, Scheffler M 2004 J. Phys. Chem. B 108 14477

    [68]
    [69]

    Morgan B J, Watson G W 2010 J. Phys. Chem. C 114 2321

  • [1] Xu Xian-Da, Zhao Lei, Sun Wei-Feng. First-principles on the energy band mechanism for modifying conduction property of graphene nanomeshes. Acta Physica Sinica, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [2] Zou Ping, Lv Dan, Xu Gui-Ying. Microstructure and thermoelectric property of (Bi1–xTbx)2(Te0.9Se0.1)3 fabricated by high pressure sintering technique. Acta Physica Sinica, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [3] Liang Jin-Jie, Gao Ning, Li Yu-Hong. Surface effect on \begin{document}${\langle 100 \rangle }$\end{document} interstitial dislocation loop in iron. Acta Physica Sinica, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [4] Internal dynamic detection of soliton molecules in a Ti: sapphire femtosecond laser. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191989
    [5] Zhu Xiao-Li, Hu Yao-Gai, Zhao Zheng-Yu, Zhang Yuan-Nong. Comparison between ionospheric disturbances caused by barium and cesium. Acta Physica Sinica, 2020, 69(2): 029401. doi: 10.7498/aps.69.20191266
    [6] Diagnosis of capacitively coupled plasma driven by pulse-modulated 27.12 MHz by using an emissive probe. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191864
    [7] Wu Yu-Ming, Ding Xiao, Wang Ren, Wang Bing-Zhong. Theoretical analysis of wide-angle metamaterial absorbers based on equivalent medium theory. Acta Physica Sinica, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [8] Huang Yong-Feng, Cao Huai-Xin, Wang Wen-Hua. Conjugate linear symmetry and its application to \begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-symmetry quantum theory. Acta Physica Sinica, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
    [9] Zhao Jian-Ning, Liu Dong-Huan, Wei Dong, Shang Xin-Chun. Thermal rectification mechanism of one-dimensional composite structure with interface thermal contact resistance. Acta Physica Sinica, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [10] Liu Hou-Tong, Mao Min-Juan. An accurate inversion method of aerosol extinction coefficient about ground-based lidar without needing calibration. Acta Physica Sinica, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
  • Citation:
Metrics
  • Abstract views:  3435
  • PDF Downloads:  612
  • Cited By: 0
Publishing process
  • Received Date:  20 December 2010
  • Accepted Date:  17 February 2011
  • Published Online:  15 November 2011

Pressure induced band-gap changes in (Ba0.5Sr0.5)TiO3 (BST) from first-principles calculations

  • 1. Laboratory of Thin Film Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China

Abstract: The high-pressure behaviors of crystalline (Ba0.5Sr0.5)TiO3 (BST) are investigated, using the first-principles calculations based on the density functional theory. The results show that as pressure increases, the band gap of BST first increases and peaks at around 55 GPa, and then gradually decreases. The analysis of density of states shows that in the low-pressure region (0P55 GPa), the increase in band gap is due to the formation of anti-bonding states and bonding states in the conduction band and valence band, respectively. In the high-pressure region (P55 GPa), the delocalization phenomenon in dominant due to the fact that the delocaligation action exceeds the force of bonding state and anti-bonding state, which results in the decrease of the band gap.

Reference (69)

Catalog

    /

    返回文章
    返回