Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetization reversal in FeCo binary alloy nanowire arrays

Zhao Rong Gu Jian-Jun Liu Li-Hu Xu Qin Cai Ning Sun Hui-Yuan

Magnetization reversal in FeCo binary alloy nanowire arrays

Zhao Rong, Gu Jian-Jun, Liu Li-Hu, Xu Qin, Cai Ning, Sun Hui-Yuan
PDF
Get Citation
  • Arrays of FexCo1-x( 0 x 0.51) binary alloy nanowires are fabricated into the (anodic aluminum oxide) AAO template pores by AC electrodeposition. The XRD pattern indicates that the crystallite structure of Co nanowire is hcp with existence of strong (100) orientation along the nanowire axis. While the crystallites structure of FeCo binary alloy nanowires is bcc with existence of strong (110) orientation along the nanowire axes. The peaks shift toward the lower angle when the Fe content of nanowire increases. At room temperature, magnetic measurement results show that FeCo alloy nanowires exhibit excellent magnetic properties. The introduction of Fe improves the magnetic property of Co nanowire compared with that of the Co nanowire. FeCo binary alloy nanowire has a larger coercive force and squareness ratio. The coercivity of the FeCo alloy nanowire is calculated by using a magnetization reversal model based on chains of spheres with coherence rotation mechanism and symmetric fanning mechanism. The magnetization reversal mechanism is supported by chains of spheres with symmetric fanning mechanism.
    • Funds: Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. A2009000254 ), the Ph.D. fund from Hebei Normal University, China (Grant No. L2006B10), and the Hebei Advanced Thin Films Laboratory Open Topic Projects.
    [1]

    Whitnet T M, Jiang J S, Searson P C, Chien C L 1993 Science 261 1316

    [2]

    Tanase M, Silevitch D M, Hultgren A, Bauer L A, Searson P C, Meyer G J, Reich D H 2002 J. Appl. Phys. 91 8549

    [3]

    Blondel A, Meier J P, Doudin B, Ansermet P 1994 Appl. Phys. Lett. 65 3019

    [4]

    Hu H N, Chen J L, Wu G H 2005 Acta Phys. Sin. 54 0389 (in Chinese) [胡海宁, 陈京兰, 吴光恒 2005 物理学报 54 0389]

    [5]

    Wang P P, Gao L M, Qiu Z Y, Song X P, Wang L Q, Yang S, Murakami R I 2008 J. Appl. Phys. 104 064304

    [6]

    Yuan S J, Zhou S M, Lu M 2006 Acta Phys. Sin. 55 0891 (in Chinese) [袁淑娟, 周仕明, 鹿牧 2006 物理学报 55 0891]

    [7]

    Yue G H, Wang L S, Wang X, Chen Y Z, Peng D L 2009 J. Appl. Phys. 105 074312

    [8]

    Thongmee S, Pang H L, Yi J B, Ding J, Lin J Y, Van L H 2009 Acta Materialia 57 2482

    [9]

    Fu X L, Wang Y, Li P G, Chen L M, Zhang H Y, Tu Q Y, Li L H, Tang W H 2005 Acta Phys. Sin. 54 1693 (in Chinese) [符秀丽, 王懿, 李培刚, 陈雷明, 张海英, 涂清云,L.H. Li, 唐为华 2005 物理学报 54 1693]

    [10]

    Hideki Masuda, Kenji Fukuda 1995 Science 268 1466

    [11]

    Liu L H, Li H T, Fan S H, Gu J J, Li Y P, Sun H Y 2009 J. Magn. Magn. Mater. 321 3511

    [12]

    Furneaux R C, Rigby W R, Davidson A P 1989 Nature 337 147

    [13]

    Yao W J, Dai F P, Wei B B 2007 Chem. Phys. Lett. 24 508

    [14]

    Carc′ia J M, Thiaville A, Miltat J 2002 J. Magn. Magn. Mater. 249 163

    [15]

    Qin D H, Peng Y, Cao L, Li H L 2003 Chem. Phys. Lett. 374 661

    [16]

    Almasi Kashi M, Ramazani A, Es’haghi F, Ghanbari S, Esmaeily A S 2010 Physica B 405 2620

    [17]

    Tan D H, Peng Y, Wang C W, Li H L 2001 Acta Phys. Sin. 50 144 (in Chinese) [覃东欢, 彭勇, 王成伟, 力虎林 2001 物理学报 50 144]

    [18]

    Peng Y, Zhang H L, Pan S L, Li H L 2000 J. Appl. Phys. 87 7405

    [19]

    Zhan Q F, Chen Z Y, Xue D S, Li F S 2002 Phys. Rev. B 66 134436

    [20]

    Jacobs I S, Bean C P 1955 Phys. Rev. 100 1060

  • [1]

    Whitnet T M, Jiang J S, Searson P C, Chien C L 1993 Science 261 1316

    [2]

    Tanase M, Silevitch D M, Hultgren A, Bauer L A, Searson P C, Meyer G J, Reich D H 2002 J. Appl. Phys. 91 8549

    [3]

    Blondel A, Meier J P, Doudin B, Ansermet P 1994 Appl. Phys. Lett. 65 3019

    [4]

    Hu H N, Chen J L, Wu G H 2005 Acta Phys. Sin. 54 0389 (in Chinese) [胡海宁, 陈京兰, 吴光恒 2005 物理学报 54 0389]

    [5]

    Wang P P, Gao L M, Qiu Z Y, Song X P, Wang L Q, Yang S, Murakami R I 2008 J. Appl. Phys. 104 064304

    [6]

    Yuan S J, Zhou S M, Lu M 2006 Acta Phys. Sin. 55 0891 (in Chinese) [袁淑娟, 周仕明, 鹿牧 2006 物理学报 55 0891]

    [7]

    Yue G H, Wang L S, Wang X, Chen Y Z, Peng D L 2009 J. Appl. Phys. 105 074312

    [8]

    Thongmee S, Pang H L, Yi J B, Ding J, Lin J Y, Van L H 2009 Acta Materialia 57 2482

    [9]

    Fu X L, Wang Y, Li P G, Chen L M, Zhang H Y, Tu Q Y, Li L H, Tang W H 2005 Acta Phys. Sin. 54 1693 (in Chinese) [符秀丽, 王懿, 李培刚, 陈雷明, 张海英, 涂清云,L.H. Li, 唐为华 2005 物理学报 54 1693]

    [10]

    Hideki Masuda, Kenji Fukuda 1995 Science 268 1466

    [11]

    Liu L H, Li H T, Fan S H, Gu J J, Li Y P, Sun H Y 2009 J. Magn. Magn. Mater. 321 3511

    [12]

    Furneaux R C, Rigby W R, Davidson A P 1989 Nature 337 147

    [13]

    Yao W J, Dai F P, Wei B B 2007 Chem. Phys. Lett. 24 508

    [14]

    Carc′ia J M, Thiaville A, Miltat J 2002 J. Magn. Magn. Mater. 249 163

    [15]

    Qin D H, Peng Y, Cao L, Li H L 2003 Chem. Phys. Lett. 374 661

    [16]

    Almasi Kashi M, Ramazani A, Es’haghi F, Ghanbari S, Esmaeily A S 2010 Physica B 405 2620

    [17]

    Tan D H, Peng Y, Wang C W, Li H L 2001 Acta Phys. Sin. 50 144 (in Chinese) [覃东欢, 彭勇, 王成伟, 力虎林 2001 物理学报 50 144]

    [18]

    Peng Y, Zhang H L, Pan S L, Li H L 2000 J. Appl. Phys. 87 7405

    [19]

    Zhan Q F, Chen Z Y, Xue D S, Li F S 2002 Phys. Rev. B 66 134436

    [20]

    Jacobs I S, Bean C P 1955 Phys. Rev. 100 1060

  • [1] Li Chuang, Li Wei-Wei, Cai Li, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Chen Ya-Bo. Flexible nitrogen dioxide gas sensor based on reduced graphene oxide sensing material using silver nanowire electrode. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [2] Preparing GaN nanowires on Al2O3 substrate without catalyst and its optical property research. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191923
    [3] Algethami Obaidallah A (Yi Bi), Li Ge-Tian, Liu Zhu-Hong, Ma Xing-Qiao. Phase transformation, magnetic properties and exchange bias of Heusler alloy Mn50–xCrxNi42Sn8. Acta Physica Sinica, 2020, 69(5): 058102. doi: 10.7498/aps.69.20191551
    [4] Ren Xian-Li, Zhang Wei-Wei, Wu Xiao-Yong, Wu Lu, Wang Yue-Xia. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties. Acta Physica Sinica, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [5] Zou Ping, Lv Dan, Xu Gui-Ying. Microstructure and thermoelectric property of (Bi1–xTbx)2(Te0.9Se0.1)3 fabricated by high pressure sintering technique. Acta Physica Sinica, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [6] Dong Zheng-Qiong, Zhao Hang, Zhu Jin-Long, Shi Ya-Ting. Influence of incident illumination on optical scattering measurement of typical photoresist nanostructure. Acta Physica Sinica, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [7] Xu Xian-Da, Zhao Lei, Sun Wei-Feng. First-principles on the energy band mechanism for modifying conduction property of graphene nanomeshes. Acta Physica Sinica, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [8] Zhang Meng, Yao Ruo-He, Liu Yu-Rong. A channel thermal noise model of nanoscaled metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [9] Zhang Ya-Nan, Zhan Nan, Deng Ling-Ling, Chen Shu-Fen. Efficiency improvement in solution-processed multilayered phosphorescent white organic light emitting diodes by silica coated silver nanocubes. Acta Physica Sinica, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [10] Investigate the effect of source-drain conduction in single-event transient on nanoscale bulk fin field effect transistor. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191896
  • Citation:
Metrics
  • Abstract views:  1710
  • PDF Downloads:  631
  • Cited By: 0
Publishing process
  • Received Date:  06 April 2011
  • Accepted Date:  11 May 2011
  • Published Online:  20 January 2012

Magnetization reversal in FeCo binary alloy nanowire arrays

  • 1. College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050016, China;
  • 2. Department of Physics, Hebei Normal University for Nationalities, Chengde 067000, China;
  • 3. Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050016, China
Fund Project:  Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. A2009000254 ), the Ph.D. fund from Hebei Normal University, China (Grant No. L2006B10), and the Hebei Advanced Thin Films Laboratory Open Topic Projects.

Abstract: Arrays of FexCo1-x( 0 x 0.51) binary alloy nanowires are fabricated into the (anodic aluminum oxide) AAO template pores by AC electrodeposition. The XRD pattern indicates that the crystallite structure of Co nanowire is hcp with existence of strong (100) orientation along the nanowire axis. While the crystallites structure of FeCo binary alloy nanowires is bcc with existence of strong (110) orientation along the nanowire axes. The peaks shift toward the lower angle when the Fe content of nanowire increases. At room temperature, magnetic measurement results show that FeCo alloy nanowires exhibit excellent magnetic properties. The introduction of Fe improves the magnetic property of Co nanowire compared with that of the Co nanowire. FeCo binary alloy nanowire has a larger coercive force and squareness ratio. The coercivity of the FeCo alloy nanowire is calculated by using a magnetization reversal model based on chains of spheres with coherence rotation mechanism and symmetric fanning mechanism. The magnetization reversal mechanism is supported by chains of spheres with symmetric fanning mechanism.

Reference (20)

Catalog

    /

    返回文章
    返回