Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of meso-pressure six-phase alternative current arc discharge plasma jet: Experiments

Guo Heng Su Yun-Bo Li He-Ping Zeng Shi Nie Qiu-Yue Li Zhan-Xian Li Zhi-Hui

Characteristics of meso-pressure six-phase alternative current arc discharge plasma jet: Experiments

Guo Heng, Su Yun-Bo, Li He-Ping, Zeng Shi, Nie Qiu-Yue, Li Zhan-Xian, Li Zhi-Hui
PDF
Get Citation
  • During the re-entry process of a supersonic vehicle in near space, the interaction between the flying vehicle and surrounding air is violent due to the hypersonic relative speed.As a consequence, the shock-heated air in the vicinity of the vehicle surface is ionized.Thus, the formed plasma layer operates in strong collision, non-uniform and nonequilibrium states.One of the serious system operation problems resulting from this non-equilibrium plasma layer is the so-called communication blackout.Physical simulation of the near-space plasma environment in laboratory based on various plasma sources is a much lower cost method than the in-situ measurements in the vehicle re-entry process.In this paper, based on the ideas for designing the dual jet direct current arc plasma and the muti-phase alternating current discharge plasma, a physical design on the multi-phase alternating discharge apparatus is proposed for generating a large volume plasma arc-jet.And a multi-phase gas discharge plasma experimental platform-2015(MPX-2015) is established with the image recording/processing, electrical and optical emission spectroscopy measurement system in this laboratory. The preliminary experimental observations show that under a typical operating condition with a 500 Pa background pressure, a large volume plasma jet with a maximum diameter of 14.0 cm and a maximum length of 60.0 cm is obtained on this newly developed platform.The influences of the gas flow rate, the chamber pressure, the electrode gap spacing and the arc current on the characteristics of the plasma free jet and impinging jet are also studied.The experimental results show that within the parameter ranges studied in this paper, the chamber pressure has a very significant influence on the size of the plasma jet, i.e., both the diameter and length of the plasma free jet increase with chamber pressure decreasing, and a similar variation trend is also observed for the thickness and length of the plasma layer surrounding a bluff body.In addition, the size of the plasma layer also increases with the increase of the plasma working gas flowrate and the discharge current.These results are helpful in the more in-depth investigating of the aerodynamic heat effect and blackout issue of the re-entry process of supersonic vehicle in near space in future.In the future research, we will modify the structures of the plasma generators in order to obtain supersonic plasma arc-jets, and study both the quasi-steady and transient characteristics of the arc plasmas, as well as the strong interactions among the plasma jet, the surrounding air and the solid bluff body.
      Corresponding author: Li He-Ping, liheping@tsinghua.edu.cn
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2014CB744100).
    [1]

    Keidar M, Kim M, Boyd I D 2008 J. Spacecr. Rockets 45 445

    [2]

    Morris R A, Bench P M, Golden K E, Sutton E A 1999 37th Aerospace Sciences Meeting and Exhibit Reno, NV, USA, January 11-14, 1999 AIAA-99-0630

    [3]

    Evans J S, Schexnayder Jr C J, Huber P W 1973 NASA TN D-7332

    [4]

    Gillman E D, Foster J E, Blankson I M 2010 NASA/TM-2010-216220

    [5]

    Rybak J P, Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. 7 879

    [6]

    Mather D E, Pasqual J M, Sillence J P, Lewis P 2005 AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference Capua, Italy, May 16-20, 2005 AIAA-2005-3443

    [7]

    Akey N D 1971 NASA Special Publication 252 19

    [8]

    Watillon P, Berthe P, Chavagnac C 2003 AIAA/ICAS International Air and Space Symposium and Exposition:The Next 100 Years Dayton, OH, USA, July 14-17, 2003 AIAA-2003-2913

    [9]

    Shirouzu M, Yamamoto M 1996 Space Plane and Hypersonic Systems and Technology Conference Norfolk, VA, USA, November 18-22, 1996 AIAA-96-4524-CP

    [10]

    Yanagihara M, Munenaga T 2004 24th International Congress of the Aeronautical Sciences Yokohama, Japan, August 29-September 3, 2004 p2004-7

    [11]

    Sakurai H, Kobayasi M, Yamazaki I, Shirouzu M, Yamamoto M 1997 Acta Astronaut. 40 105

    [12]

    Auweter-Kurtz M, Kurtz H L, Laure S 1996 J. Propul. Power 12 1053

    [13]

    Zhao L, Liu X X, Su H S 2015 Journal of Telemetry Tracking and Command 36 28 (in Chinese)[赵良, 刘秀祥, 苏汉生 2015 遥测遥控 36 28]

    [14]

    Hermann T, Lhle S, Zander F, Fulge H, Fasoulas S 2016 J. Thermophys. Heat Transf. 30 673

    [15]

    Lemmer K M 2009 Ph. D. Dissertation (Ann Arbor:University of Michigan)

    [16]

    Yang M, Li X, Xie K, Liu Y, Liu D 2013 Phys. Plasmas 20 012101

    [17]

    Shashurin A, Zhuang T, Teel G, Keidar M, Kundrapu M, Loverich J, Beilis I I, Raitses Y 2014 J. Spacecr. Rockets 51 838

    [18]

    Zhang B L, Zhuang Z, Li Y W, Wang Y T, Duan P Z, Zhang M K 2017 High Voltage Engineering 43 3055 (in Chinese)[张百灵, 庄重, 李益文, 王宇天, 段朋振, 张茗柯 2017 高电压技术 43 3055]

    [19]

    Pan W, Zhang W, Zhang W, Wu C 2001 Plasma Chem. Plasma Process. 21 23

    [20]

    Fauchais P, Vardelle A 1997 IEEE Trans. Plasma Sci. 25 1258

    [21]

    Colombo V, Concetti A, Ghedini E, Rotundo F, Sanibondi P, Boselli M, Dallavalle S, Gherardi M, Nemchinsky V, Vancini M 2012 Plasma Chem. Plasma Process. 32 411

    [22]

    Vardelle A, Moreau C, Akedo J, et al. 2016 J. Therm. Spray Technol. 25 1376

    [23]

    Jin F, Li P, Ge N 2014 High Voltage Engineering 40 2057 (in Chinese)[金锋, 李鹏, 葛楠 2014 高电压技术 40 2057]

    [24]

    Riaby V A, Masherov P E, Obukhov V A, Savinov V P 2013 High Voltage Engineering 39 30596

    [25]

    25 Yao Y, Hossain M M, Watanabe T, Matsuura T, Funabiki F, Yano T 2008 Chem. Eng. J. 139 390

    [26]

    Watanabe T, Liu Y, Tanaka M 2014 Plasma Chem. Plasma Process. 34 443

    [27]

    Wang Z, Wu G Q, Ge N, Li H P, Bao C Y 2010 IEEE Trans. Plasma Sci. 38 2906

    [28]

    Raizer Y P 1991 Gas Discharge Physics (Berlin:Springer) p136

    [29]

    Zhang H, Wu G Q, Li H P, Bao C Y 2009 IEEE Trans. Plasma Sci. 37 1129

    [30]

    Mahmood S, Shaikh N M, Kalyar M A, Rafiq M, Piracha N K, Baig M A 2009 J. Quant. Spectrosc. Radiat. Transf. 110 1840

    [31]

    de Izarra C 2000 J. Phys. D:Appl. Phys. 33 1697

    [32]

    Park J, Henins I, Herrmann H W, Selwyn G S 2000 Phys. Plasmas 7 3141

    [33]

    Guo H, Zhang X N, Nie Q Y, Li H P, Zeng S, Li Z H 2018 Acta Phys. Sin. 67 055201 (in Chinese) [郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉 2018 物理学报 67 055201]

    [34]

    He L M, Lei J P, Chen Y, Liu X J, Chen G C, Zeng H 2017 High Voltage Engineering 43 3061 (in Chinese)[何立明, 雷健平, 陈一, 刘兴建, 陈高成, 曾昊 2017 高电压技术 43 3061]

    [35]

    Li X D, Zhang M, Zhu F S, Zhang H, Bo Z 2015 High Voltage Engineering 41 2022 (in Chinese)[李晓东, 张明, 朱凤森, 张浩, 薄拯 2015 高电压技术 41 2022]

    [36]

    Zhang H, He L, Yu J, Qi W, Chen G 2018 Plasma Sci. Technol. 20 024001

  • [1]

    Keidar M, Kim M, Boyd I D 2008 J. Spacecr. Rockets 45 445

    [2]

    Morris R A, Bench P M, Golden K E, Sutton E A 1999 37th Aerospace Sciences Meeting and Exhibit Reno, NV, USA, January 11-14, 1999 AIAA-99-0630

    [3]

    Evans J S, Schexnayder Jr C J, Huber P W 1973 NASA TN D-7332

    [4]

    Gillman E D, Foster J E, Blankson I M 2010 NASA/TM-2010-216220

    [5]

    Rybak J P, Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. 7 879

    [6]

    Mather D E, Pasqual J M, Sillence J P, Lewis P 2005 AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference Capua, Italy, May 16-20, 2005 AIAA-2005-3443

    [7]

    Akey N D 1971 NASA Special Publication 252 19

    [8]

    Watillon P, Berthe P, Chavagnac C 2003 AIAA/ICAS International Air and Space Symposium and Exposition:The Next 100 Years Dayton, OH, USA, July 14-17, 2003 AIAA-2003-2913

    [9]

    Shirouzu M, Yamamoto M 1996 Space Plane and Hypersonic Systems and Technology Conference Norfolk, VA, USA, November 18-22, 1996 AIAA-96-4524-CP

    [10]

    Yanagihara M, Munenaga T 2004 24th International Congress of the Aeronautical Sciences Yokohama, Japan, August 29-September 3, 2004 p2004-7

    [11]

    Sakurai H, Kobayasi M, Yamazaki I, Shirouzu M, Yamamoto M 1997 Acta Astronaut. 40 105

    [12]

    Auweter-Kurtz M, Kurtz H L, Laure S 1996 J. Propul. Power 12 1053

    [13]

    Zhao L, Liu X X, Su H S 2015 Journal of Telemetry Tracking and Command 36 28 (in Chinese)[赵良, 刘秀祥, 苏汉生 2015 遥测遥控 36 28]

    [14]

    Hermann T, Lhle S, Zander F, Fulge H, Fasoulas S 2016 J. Thermophys. Heat Transf. 30 673

    [15]

    Lemmer K M 2009 Ph. D. Dissertation (Ann Arbor:University of Michigan)

    [16]

    Yang M, Li X, Xie K, Liu Y, Liu D 2013 Phys. Plasmas 20 012101

    [17]

    Shashurin A, Zhuang T, Teel G, Keidar M, Kundrapu M, Loverich J, Beilis I I, Raitses Y 2014 J. Spacecr. Rockets 51 838

    [18]

    Zhang B L, Zhuang Z, Li Y W, Wang Y T, Duan P Z, Zhang M K 2017 High Voltage Engineering 43 3055 (in Chinese)[张百灵, 庄重, 李益文, 王宇天, 段朋振, 张茗柯 2017 高电压技术 43 3055]

    [19]

    Pan W, Zhang W, Zhang W, Wu C 2001 Plasma Chem. Plasma Process. 21 23

    [20]

    Fauchais P, Vardelle A 1997 IEEE Trans. Plasma Sci. 25 1258

    [21]

    Colombo V, Concetti A, Ghedini E, Rotundo F, Sanibondi P, Boselli M, Dallavalle S, Gherardi M, Nemchinsky V, Vancini M 2012 Plasma Chem. Plasma Process. 32 411

    [22]

    Vardelle A, Moreau C, Akedo J, et al. 2016 J. Therm. Spray Technol. 25 1376

    [23]

    Jin F, Li P, Ge N 2014 High Voltage Engineering 40 2057 (in Chinese)[金锋, 李鹏, 葛楠 2014 高电压技术 40 2057]

    [24]

    Riaby V A, Masherov P E, Obukhov V A, Savinov V P 2013 High Voltage Engineering 39 30596

    [25]

    25 Yao Y, Hossain M M, Watanabe T, Matsuura T, Funabiki F, Yano T 2008 Chem. Eng. J. 139 390

    [26]

    Watanabe T, Liu Y, Tanaka M 2014 Plasma Chem. Plasma Process. 34 443

    [27]

    Wang Z, Wu G Q, Ge N, Li H P, Bao C Y 2010 IEEE Trans. Plasma Sci. 38 2906

    [28]

    Raizer Y P 1991 Gas Discharge Physics (Berlin:Springer) p136

    [29]

    Zhang H, Wu G Q, Li H P, Bao C Y 2009 IEEE Trans. Plasma Sci. 37 1129

    [30]

    Mahmood S, Shaikh N M, Kalyar M A, Rafiq M, Piracha N K, Baig M A 2009 J. Quant. Spectrosc. Radiat. Transf. 110 1840

    [31]

    de Izarra C 2000 J. Phys. D:Appl. Phys. 33 1697

    [32]

    Park J, Henins I, Herrmann H W, Selwyn G S 2000 Phys. Plasmas 7 3141

    [33]

    Guo H, Zhang X N, Nie Q Y, Li H P, Zeng S, Li Z H 2018 Acta Phys. Sin. 67 055201 (in Chinese) [郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉 2018 物理学报 67 055201]

    [34]

    He L M, Lei J P, Chen Y, Liu X J, Chen G C, Zeng H 2017 High Voltage Engineering 43 3061 (in Chinese)[何立明, 雷健平, 陈一, 刘兴建, 陈高成, 曾昊 2017 高电压技术 43 3061]

    [35]

    Li X D, Zhang M, Zhu F S, Zhang H, Bo Z 2015 High Voltage Engineering 41 2022 (in Chinese)[李晓东, 张明, 朱凤森, 张浩, 薄拯 2015 高电压技术 41 2022]

    [36]

    Zhang H, He L, Yu J, Qi W, Chen G 2018 Plasma Sci. Technol. 20 024001

  • [1] Guo Heng, Zhang Xiao-Ning, Nie Qiu-Yue, Li He-Ping, Zeng Shi, Li Zhi-Hui. Numerical modelling for characteristics of the meso-pressure six-phase alternative current arc discharge plasma jet. Acta Physica Sinica, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [2] Chen Jian, Liu Zhi-Qiang, Guo Heng, Li He-Ping, Jiang Dong-Jun, Zhou Ming-Sheng. Physical characteristics of ion extraction simulation system based on gas discharge plasma jet. Acta Physica Sinica, 2018, 67(18): 182801. doi: 10.7498/aps.67.20180919
    [3] Jiang Nan, Cao Ze-Xian. Experimental studies on an atmospheric pressure He plasma jet. Acta Physica Sinica, 2010, 59(5): 3324-3330. doi: 10.7498/aps.59.3324
    [4] Li Xue-Chen, Yuan Ning, Jia Peng-Ying, Chang Yuan-Yuan, Ji Ya-Fei. Characteristics of atmospheric pressure air uniform discharge generated by a plasma needle. Acta Physica Sinica, 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [5] Sun Jiao, Zhang Jia-Liang, Wang De-Zhen, Ma Teng-Cai. A novel cold plasma jet generated by capillary atmospheric dielectric barrier discharge. Acta Physica Sinica, 2006, 55(1): 344-350. doi: 10.7498/aps.55.344
    [6] Huang Wen-Tong, Li Shou-Zhe, Wang De-Zhen, Ma Teng-Cai. Characteristics of the plasma discharge generated in dielectric capillary at atmospheric pressure. Acta Physica Sinica, 2010, 59(6): 4110-4116. doi: 10.7498/aps.59.4110
    [7] Chen Jun-Ying, Dong Li-Fang, Li Yuan-Yuan, Song Qian, Ji Ya-Fei. Plasma parameters of square superlattice pattern in a dielectric barrier discharge. Acta Physica Sinica, 2012, 61(7): 075211. doi: 10.7498/aps.61.075211
    [8] Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie. Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure. Acta Physica Sinica, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [9] WANG HAI-DA. SEMICLASSICAL THEORY OF THE TRISTABLE PHENOMENA IN ARGON DISCHARGE PLASMA. Acta Physica Sinica, 1990, 39(12): 1928-1936. doi: 10.7498/aps.39.1928
    [10] Cheron Bruno, Yan Jian-Hua, Ma Zeng-Yi, Pan Xin-Chao, Cen Ke-Fa, Tu Xin. Characterization of DC argon plasma jet at atmospheric pressure. Acta Physica Sinica, 2006, 55(7): 3451-3457. doi: 10.7498/aps.55.3451
  • Citation:
Metrics
  • Abstract views:  268
  • PDF Downloads:  138
  • Cited By: 0
Publishing process
  • Received Date:  29 November 2017
  • Accepted Date:  04 January 2018
  • Published Online:  20 February 2018

Characteristics of meso-pressure six-phase alternative current arc discharge plasma jet: Experiments

    Corresponding author: Li He-Ping, liheping@tsinghua.edu.cn
  • 1. Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
  • 2. School of Mechanical Engineering, North China University of Science and Technology, Tangshan 063500, China;
  • 3. School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China;
  • 4. Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
  • 5. National Laboratory for Computational Fluid Dynamics, Beijing 100191, China
Fund Project:  Project supported by the State Key Development Program for Basic Research of China (Grant No. 2014CB744100).

Abstract: During the re-entry process of a supersonic vehicle in near space, the interaction between the flying vehicle and surrounding air is violent due to the hypersonic relative speed.As a consequence, the shock-heated air in the vicinity of the vehicle surface is ionized.Thus, the formed plasma layer operates in strong collision, non-uniform and nonequilibrium states.One of the serious system operation problems resulting from this non-equilibrium plasma layer is the so-called communication blackout.Physical simulation of the near-space plasma environment in laboratory based on various plasma sources is a much lower cost method than the in-situ measurements in the vehicle re-entry process.In this paper, based on the ideas for designing the dual jet direct current arc plasma and the muti-phase alternating current discharge plasma, a physical design on the multi-phase alternating discharge apparatus is proposed for generating a large volume plasma arc-jet.And a multi-phase gas discharge plasma experimental platform-2015(MPX-2015) is established with the image recording/processing, electrical and optical emission spectroscopy measurement system in this laboratory. The preliminary experimental observations show that under a typical operating condition with a 500 Pa background pressure, a large volume plasma jet with a maximum diameter of 14.0 cm and a maximum length of 60.0 cm is obtained on this newly developed platform.The influences of the gas flow rate, the chamber pressure, the electrode gap spacing and the arc current on the characteristics of the plasma free jet and impinging jet are also studied.The experimental results show that within the parameter ranges studied in this paper, the chamber pressure has a very significant influence on the size of the plasma jet, i.e., both the diameter and length of the plasma free jet increase with chamber pressure decreasing, and a similar variation trend is also observed for the thickness and length of the plasma layer surrounding a bluff body.In addition, the size of the plasma layer also increases with the increase of the plasma working gas flowrate and the discharge current.These results are helpful in the more in-depth investigating of the aerodynamic heat effect and blackout issue of the re-entry process of supersonic vehicle in near space in future.In the future research, we will modify the structures of the plasma generators in order to obtain supersonic plasma arc-jets, and study both the quasi-steady and transient characteristics of the arc plasmas, as well as the strong interactions among the plasma jet, the surrounding air and the solid bluff body.

Reference (36)

Catalog

    /

    返回文章
    返回