搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于气体放电等离子体射流源的模拟离子引出实验平台物理特性

陈坚 刘志强 郭恒 李和平 姜东君 周明胜

基于气体放电等离子体射流源的模拟离子引出实验平台物理特性

陈坚, 刘志强, 郭恒, 李和平, 姜东君, 周明胜
PDF
导出引用
导出核心图
  • 离子引出过程是原子蒸气激光同位素分离中非常重要的物理过程之一,而其中关键的等离子体参数(等离子体初始密度和电子温度等)均会对离子引出特性产生影响.基于千赫兹电源驱动的氩气高压交流放电等离子体射流源,建立了离子引出模拟实验平台-2015(IEX-2015),开发了用于诊断氩等离子体参数的碰撞-辐射模型,对等离子体射流区的电子温度和电子数密度等关键参数进行了测量.结果表明,电源输入功率和驱动频率以及工作气体流量均会对等离子体射流区的电子温度和数密度产生影响;在真空腔压强为10-2 Pa量级下,射流区电子数密度和电子温度的可调参数范围分别为1091011 cm-3和1.72.8 eV,这与实际离子引出过程中的等离子体参数范围相近.在此基础上,开展了不同引出电压、极板间距和电子数密度条件下初步的离子引出实验,所得到的离子引出电流变化规律亦与实际原子蒸气激光同位素分离中的离子引出特性定性一致.上述研究结果验证了在IEX-2015上开展离子引出模拟实验的可行性,为后续深入开展离子引出特性的实验研究准备了良好的条件.
      通信作者: 李和平, liheping@tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11775128)资助的课题.
    [1]

    Letokhov V S 1977 Ann. Rev. Phys. Chem. 28 133

    [2]

    Chen F F 1982 Phys. Fluid 25 2385

    [3]

    Widner M, Alexeff I, Jones W D, Lonngren K E 1970 Phys. Fluid 13 2532

    [4]

    Okano K 1992 J. Nucl. Sci. Technol. 29 601

    [5]

    Yuan K X, Xu P F, Yu P Z, Wang J Y 1993 Chin. J. Atom. Mol. Phys. 10 2839 (in Chinese) [袁奎训, 徐品方, 俞沛增, 王金月 1993 原子与分子物理学报 10 2839]

    [6]

    Li H P, Wang P, Wang X, You W, Chai J J, Li Z Y 2015 High Voltage Eng. 41 2825 (in Chinese) [李和平, 王鹏, 王鑫, 尤伟, 柴俊杰, 李增耀 2015 高电压技术 41 2825]

    [7]

    Li H P, Wang X, Wang P, Chai J J, Li Z X 2016 High Voltage Eng. 42 706 (in Chinese) [李和平, 王鑫, 王鹏, 柴俊杰, 李占贤 2016 高电压技术 42 706]

    [8]

    Yamada K, Tetsuka T, Deguchi Y 1990 J. Appl. Phys. 67 6734

    [9]

    Nishio R, Yamada K, Suzuki K, Wakabayashi M 1995 J. Nucl. Sci. Technol. 32 180

    [10]

    Yamada K, Tetsuka T 1994 J. Nucl. Sci. Technol. 31 301

    [11]

    Gundienkov V A, Tkachev A N, Yakovlenko S I 2004 Quantum Electron. 34 589

    [12]

    Yamada K, Tetsuka T, Deguchi Y 1991 J. Appl. Phys. 69 8064

    [13]

    Kurosawa H, Hasegawa S, Suzuki A 2002 J. Appl. Phys. 91 4818

    [14]

    Chen R 2005 M. S. Thesis (Beijing: Tsinghua University) (in Chinese) [陈戎 2005 硕士学位论文 (北京: 清华大学)]

    [15]

    Chen J, Xiang J Q, Guo H, Li H P, Chen X, Wang P, Chai J J, Jiang D J, Zhou M S 2017 High Voltage Eng. 43 1830 (in Chinese) [陈坚, 向金秋, 郭恒, 李和平, 陈兴, 王鹏, 柴俊杰, 姜东君, 周明胜 2017 高电压技术 43 1830]

    [16]

    Zhidkov A G 1998 Phys. Plasmas 5 541

    [17]

    Matsui T, Tsuchida K, Tsuda S, Suzuki K, Shoji T 1996 Phys. Plasmas 3 4367

    [18]

    Cao Z L, Zhang W X, Bao C Y 2007 J. Chin. Mass Spectr. Soc. 28 5 (in Chinese) [曹宗亮, 张微啸, 包成玉 2007 质谱学报 28 5]

    [19]

    Majumder A, Mago V K, Ray A K, Kather P T, Das A K 2005 Appl. Phys. B 81 669

    [20]

    Bates D R, Kingston A E, McWhirter R W P 1962 Proc. Roy. Soc. A 267 297

    [21]

    Slavk J 1991 Contrib. Plasma Phys. 31 605

    [22]

    Crintea D L, Czarnetzki U, Iordanova S, Koleva I, Luggenhlscher D 2009 J. Phys. D: Appl. Phys. 42 045208

    [23]

    Donnelly V M, Malyshev M V 2000 Appl. Phys. Lett. 77 2467

  • [1]

    Letokhov V S 1977 Ann. Rev. Phys. Chem. 28 133

    [2]

    Chen F F 1982 Phys. Fluid 25 2385

    [3]

    Widner M, Alexeff I, Jones W D, Lonngren K E 1970 Phys. Fluid 13 2532

    [4]

    Okano K 1992 J. Nucl. Sci. Technol. 29 601

    [5]

    Yuan K X, Xu P F, Yu P Z, Wang J Y 1993 Chin. J. Atom. Mol. Phys. 10 2839 (in Chinese) [袁奎训, 徐品方, 俞沛增, 王金月 1993 原子与分子物理学报 10 2839]

    [6]

    Li H P, Wang P, Wang X, You W, Chai J J, Li Z Y 2015 High Voltage Eng. 41 2825 (in Chinese) [李和平, 王鹏, 王鑫, 尤伟, 柴俊杰, 李增耀 2015 高电压技术 41 2825]

    [7]

    Li H P, Wang X, Wang P, Chai J J, Li Z X 2016 High Voltage Eng. 42 706 (in Chinese) [李和平, 王鑫, 王鹏, 柴俊杰, 李占贤 2016 高电压技术 42 706]

    [8]

    Yamada K, Tetsuka T, Deguchi Y 1990 J. Appl. Phys. 67 6734

    [9]

    Nishio R, Yamada K, Suzuki K, Wakabayashi M 1995 J. Nucl. Sci. Technol. 32 180

    [10]

    Yamada K, Tetsuka T 1994 J. Nucl. Sci. Technol. 31 301

    [11]

    Gundienkov V A, Tkachev A N, Yakovlenko S I 2004 Quantum Electron. 34 589

    [12]

    Yamada K, Tetsuka T, Deguchi Y 1991 J. Appl. Phys. 69 8064

    [13]

    Kurosawa H, Hasegawa S, Suzuki A 2002 J. Appl. Phys. 91 4818

    [14]

    Chen R 2005 M. S. Thesis (Beijing: Tsinghua University) (in Chinese) [陈戎 2005 硕士学位论文 (北京: 清华大学)]

    [15]

    Chen J, Xiang J Q, Guo H, Li H P, Chen X, Wang P, Chai J J, Jiang D J, Zhou M S 2017 High Voltage Eng. 43 1830 (in Chinese) [陈坚, 向金秋, 郭恒, 李和平, 陈兴, 王鹏, 柴俊杰, 姜东君, 周明胜 2017 高电压技术 43 1830]

    [16]

    Zhidkov A G 1998 Phys. Plasmas 5 541

    [17]

    Matsui T, Tsuchida K, Tsuda S, Suzuki K, Shoji T 1996 Phys. Plasmas 3 4367

    [18]

    Cao Z L, Zhang W X, Bao C Y 2007 J. Chin. Mass Spectr. Soc. 28 5 (in Chinese) [曹宗亮, 张微啸, 包成玉 2007 质谱学报 28 5]

    [19]

    Majumder A, Mago V K, Ray A K, Kather P T, Das A K 2005 Appl. Phys. B 81 669

    [20]

    Bates D R, Kingston A E, McWhirter R W P 1962 Proc. Roy. Soc. A 267 297

    [21]

    Slavk J 1991 Contrib. Plasma Phys. 31 605

    [22]

    Crintea D L, Czarnetzki U, Iordanova S, Koleva I, Luggenhlscher D 2009 J. Phys. D: Appl. Phys. 42 045208

    [23]

    Donnelly V M, Malyshev M V 2000 Appl. Phys. Lett. 77 2467

  • [1] 章太阳, 陈冉. 东方超环(EAST)装置中等离子体边界锂杂质的碰撞-辐射模型. 物理学报, 2017, 66(12): 125201. doi: 10.7498/aps.66.125201
    [2] 郭恒, 苏运波, 李和平, 曾实, 聂秋月, 李占贤, 李志辉. 亚大气压六相交流电弧等离子体射流特性研究:实验测量. 物理学报, 2018, 67(4): 045201. doi: 10.7498/aps.67.20172556
    [3] 郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉. 亚大气压六相交流电弧放电等离子体射流特性数值模拟. 物理学报, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [4] 谢国锋, 王德武, 应纯同. 考虑溅射损失的RF共振法离子引出和收集. 物理学报, 2005, 54(5): 2147-2152. doi: 10.7498/aps.54.2147
    [5] 宋晓鹏, 陈 戎, 包成玉, 王德武. 平行板静电场法离子引出的对称收集. 物理学报, 2005, 54(9): 4198-4202. doi: 10.7498/aps.54.4198
    [6] 熊家贵, 王德武. 离子引出的二维PIC-MCC模拟. 物理学报, 2000, 49(12): 2420-2426. doi: 10.7498/aps.49.2420
    [7] 谢国锋, 王德武, 应纯同. 计及溅射损失的平行板静电场法离子引出和收集. 物理学报, 2005, 54(4): 1543-1551. doi: 10.7498/aps.54.1543
    [8] 谢国锋. 利用溅射原子角分布规律改进平行板静电场法. 物理学报, 2008, 57(3): 1784-1787. doi: 10.7498/aps.57.1784
    [9] 段耀勇, 郭永辉, 邱爱慈, 吴刚. 碰撞辐射稳态等离子体电荷态分布的一种扩展模型. 物理学报, 2010, 59(8): 5588-5595. doi: 10.7498/aps.59.5588
    [10] 谢会乔, 谭熠, 刘阳青, 王文浩, 高喆. 中国联合球形托卡马克氦放电等离子体的碰撞辐射模型及其在谱线比法诊断的应用. 物理学报, 2014, 63(12): 125203. doi: 10.7498/aps.63.125203
    [11] 蒲以康, 谢卫平, 黄显宾, 杨礼兵, 蔡红春, 李晶. “碰撞-辐射”模型在Z箍缩等离子体K壳层线辐射谱分析中的应用. 物理学报, 2010, 59(11): 7922-7929. doi: 10.7498/aps.59.7922
    [12] 王伟宗, 吴翊, 荣命哲, 杨飞. 局域热力学平衡态空气电弧等离子体输运参数计算研究. 物理学报, 2012, 61(10): 105201. doi: 10.7498/aps.61.105201
    [13] 孟续军, 孙永盛, 龙燕秋. 热动平衡态下热等离子体内的离子丰度研究. 物理学报, 1998, 47(4): 625-631. doi: 10.7498/aps.47.625
    [14] 江南, 曹则贤. 一种大气压放电氦等离子体射流的实验研究. 物理学报, 2010, 59(5): 3324-3330. doi: 10.7498/aps.59.3324
    [15] 李雪辰, 袁宁, 贾鹏英, 常媛媛, 嵇亚飞. 大气压等离子体针产生空气均匀放电特性研究. 物理学报, 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [16] 王建龙, 丁芳, 朱晓东. 高气压均匀直流辉光放电等离子体的光学特性. 物理学报, 2015, 64(4): 045206. doi: 10.7498/aps.64.045206
    [17] 朱红莲, 王德武. 离子引出收集的沉积与溅射研究. 物理学报, 2002, 51(6): 1338-1345. doi: 10.7498/aps.51.1338
    [18] 张承福. 等离子体模型碰撞项的比较. 物理学报, 1986, 35(7): 947-952. doi: 10.7498/aps.35.947
    [19] 黄文同, 李寿哲, 王德真, 马腾才. 大气压下绝缘毛细管内等离子体放电及其特性研究. 物理学报, 2010, 59(6): 4110-4116. doi: 10.7498/aps.59.4110
    [20] 陈俊英, 董丽芳, 李媛媛, 宋倩, 嵇亚飞. 大气压介质阻挡放电超四边形斑图的等离子体参量. 物理学报, 2012, 61(7): 075211. doi: 10.7498/aps.61.075211
  • 引用本文:
    Citation:
计量
  • 文章访问数:  376
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-08
  • 修回日期:  2018-06-05
  • 刊出日期:  2018-09-20

基于气体放电等离子体射流源的模拟离子引出实验平台物理特性

  • 1. 清华大学工程物理系, 北京 100084;
  • 2. 华北理工大学机械工程学院, 唐山 063210
  • 通信作者: 李和平, liheping@tsinghua.edu.cn
    基金项目: 

    国家自然科学基金(批准号:11775128)资助的课题.

摘要: 离子引出过程是原子蒸气激光同位素分离中非常重要的物理过程之一,而其中关键的等离子体参数(等离子体初始密度和电子温度等)均会对离子引出特性产生影响.基于千赫兹电源驱动的氩气高压交流放电等离子体射流源,建立了离子引出模拟实验平台-2015(IEX-2015),开发了用于诊断氩等离子体参数的碰撞-辐射模型,对等离子体射流区的电子温度和电子数密度等关键参数进行了测量.结果表明,电源输入功率和驱动频率以及工作气体流量均会对等离子体射流区的电子温度和数密度产生影响;在真空腔压强为10-2 Pa量级下,射流区电子数密度和电子温度的可调参数范围分别为1091011 cm-3和1.72.8 eV,这与实际离子引出过程中的等离子体参数范围相近.在此基础上,开展了不同引出电压、极板间距和电子数密度条件下初步的离子引出实验,所得到的离子引出电流变化规律亦与实际原子蒸气激光同位素分离中的离子引出特性定性一致.上述研究结果验证了在IEX-2015上开展离子引出模拟实验的可行性,为后续深入开展离子引出特性的实验研究准备了良好的条件.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回