Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The investigation of lithium insertion mechanism for Sn3InSb4 alloy based on first-principle calculation

Ru Qiang Li Yan-Ling Hu She-Jun Peng Wei Zhang Zhi-Wen

The investigation of lithium insertion mechanism for Sn3InSb4 alloy based on first-principle calculation

Ru Qiang, Li Yan-Ling, Hu She-Jun, Peng Wei, Zhang Zhi-Wen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The mechanism of Li insertion into Sn3InSb4 alloy is investigated by means of the first-principle plane-wave pseudo-potential method. The lithium intercalation formation, the theoretical capacity, the volume expansion ratio and the electronic structures are calculated. In the intercalation process, lithium atoms firstly fill the interstitial sites, and then lithium atoms continue to replace the metal atoms. Large expansion ratio from 11.74% to 43.40% would lead to the bad cycle stability for Sn3InSb4 alloy as the lithium battery electrode material. The conduct electricity is improved with lithium content increasing, then the conduct electricity decreases with interstitial sites being filled with lithium atoms and Sn-replacement reaction occurring.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51101062), the Educational Commission of Guangdong Province, China (Grant No. C10179), and the Science and Technology Project of Guangzhou City, China (Grant No. 11C52090680).
    [1]

    Wachtler M, Besenhard J O, Winter M 2001 J. Power Sources 94189

    [2]

    Balan L, Schneider R, Billaud D 2005 J. Mater. Lett. 59 2898

    [3]

    Trifonova A, Wachtler M, Wagner M R 2004 J. Solid State Ionics168 51

    [4]

    Winter M, Besenhard J O 1999 Electrochim. Acta 45 31

    [5]

    Yang J, TakedaY, Imanishi N 1999 J. Electrochem. Soc. 146 4009

    [6]

    Wachtler M, Winter M, Besenhard J O 2002 J. Power Sources 105151

    [7]

    Wang F, Zhao M S, Song X P 2009 J. Power Sources 472 55

    [8]

    Shi L H, Li H, Wang Z X, Huang X J, Chen L Q 2001 J. Mater.Chem. 11 1502

    [9]

    Li H, Wang Q, Shi L H, Chen L Q, Huang X J 2002 Chem. Mater.14 103

    [10]

    Park M S, Needham S A, Wang G X, Kang Y M, Park J S, Dou SX, Liu H K 2007 Chem. Mater. 19 2406

    [11]

    Hassoun J, Derrien G, Panero S, Scrosati B 2009 Electrochim.Acta 54 4441

    [12]

    Wang F, Zhao M S, Song X P 2008 J. Power Sources 175 558

    [13]

    Tabuchi T, Hochgatterer N, Ogumi Z, Winter M 2009 J. PowerSources 188 552

    [14]

    Hou X H, Hu S J, Li W S, Zhao L Z, Yu H W, Tan C L 2008 ActaPhys. Sin. 57 2374 (in Chinese) [侯贤华, 胡社军, 李伟善, 赵灵智, 余洪文, 谭春林 2008 物理学报 57 2374]

    [15]

    Ceder G, Chiang Y M, Sadoway D R, Aydinol M K , Jang Y I , Huang B 1998 Nature 392 694

    [16]

    Courtney I A, Tse J S, Mao O, Hafner J, Dahn J R 1998 Phys. Rev.B 58 15583

    [17]

    Kganyago K R, Ngoepe P E 2003 Phys. Rev. B 68 205111

    [18]

    Hou X H, Hu S J, Li W S, Ru Q, Yu H W, Huang Z W 2008 Chin.Phys. B 17 3422

    [19]

    Ouyang C Y, Shi S Q, Wang Z X, Huang X J, Chen L Q 2004Phys. Rev. B 69 104303

    [20]

    Shi S Q, Zhang H, Ke X Z, Ouyang C Y, Lei M S, Chen L Q 2009Phys. Lett. A 373 4096

    [21]

    Shi S Q, Ouyang C Y, Xiong Z H, Liu L J, Wang Z X, Li H, WangD S, Chen L Q, Huang X J 2005 Phys. Rev. B 71 144404

    [22]

    Ouyang C Y, Shi S Q, Wang Z X, Li H, Huang X J, Chen L Q2004 J. Phys.: Condens. Matter 16 2265

    [23]

    Wang D Y, Li H, Shi S Q, Huang X J, Chen L Q 2005 Electrochim.Acta 50 2955

    [24]

    Ouyang C Y, Du Y L, Shi S Q, Lei M S 2009 Phys. Lett. A 3732796

    [25]

    Shi S Q, Wang D S, Meng S, Chen L Q, Huang X J 2003 Phys.Rev. B 67 115130

    [26]

    Shi S Q, Ouyang C Y, Wang D S, Chen L Q, Huang X J 2003Solid State Commun. 126 531

    [27]

    Ouyang C Y, Shi S Q, Wang Z X, Huang X J, Chen L Q 2004 SolidState Commun. 130 501

    [28]

    Ouyang C Y, Du Y L, Shi S Q, Lei M S 2009 Phys. Lett. A 3732796

    [29]

    Ru Q, Tian Q, Hu S J, Zhao L Z 2011 Int. J. Miner. Metall. Mater.18 216

    [30]

    Ru Q, Peng W, Zhang Z W 2011 Rare Metals 30 1

    [31]

    Lee J W, Anguchamy Y K, Popov B N 2006 J. Power Scources162 1395

    [32]

    Liu H Y, Zhu Z Z, Yang Y 2008 Acta Phys. Sin. 57 5182 (in Chinese) [刘慧英, 朱梓忠, 杨勇 2008 物理学报 57 5182]

    [33]

    Liu H Y, Hou Z F, Zhu Z Z, Huang M C, Yang Y 2004 Acta Phys.Sin. 53 3868 (in Chinese) [刘慧英, 侯柱锋, 朱梓忠, 黄美纯, 杨勇 2004 物理学报 53 3868]

    [34]

    Kropf A J, Tostmann H, Johnson C S, Vaughey J T, Thackeray MM 2001 Electrochem. Commun. 3 244

  • [1]

    Wachtler M, Besenhard J O, Winter M 2001 J. Power Sources 94189

    [2]

    Balan L, Schneider R, Billaud D 2005 J. Mater. Lett. 59 2898

    [3]

    Trifonova A, Wachtler M, Wagner M R 2004 J. Solid State Ionics168 51

    [4]

    Winter M, Besenhard J O 1999 Electrochim. Acta 45 31

    [5]

    Yang J, TakedaY, Imanishi N 1999 J. Electrochem. Soc. 146 4009

    [6]

    Wachtler M, Winter M, Besenhard J O 2002 J. Power Sources 105151

    [7]

    Wang F, Zhao M S, Song X P 2009 J. Power Sources 472 55

    [8]

    Shi L H, Li H, Wang Z X, Huang X J, Chen L Q 2001 J. Mater.Chem. 11 1502

    [9]

    Li H, Wang Q, Shi L H, Chen L Q, Huang X J 2002 Chem. Mater.14 103

    [10]

    Park M S, Needham S A, Wang G X, Kang Y M, Park J S, Dou SX, Liu H K 2007 Chem. Mater. 19 2406

    [11]

    Hassoun J, Derrien G, Panero S, Scrosati B 2009 Electrochim.Acta 54 4441

    [12]

    Wang F, Zhao M S, Song X P 2008 J. Power Sources 175 558

    [13]

    Tabuchi T, Hochgatterer N, Ogumi Z, Winter M 2009 J. PowerSources 188 552

    [14]

    Hou X H, Hu S J, Li W S, Zhao L Z, Yu H W, Tan C L 2008 ActaPhys. Sin. 57 2374 (in Chinese) [侯贤华, 胡社军, 李伟善, 赵灵智, 余洪文, 谭春林 2008 物理学报 57 2374]

    [15]

    Ceder G, Chiang Y M, Sadoway D R, Aydinol M K , Jang Y I , Huang B 1998 Nature 392 694

    [16]

    Courtney I A, Tse J S, Mao O, Hafner J, Dahn J R 1998 Phys. Rev.B 58 15583

    [17]

    Kganyago K R, Ngoepe P E 2003 Phys. Rev. B 68 205111

    [18]

    Hou X H, Hu S J, Li W S, Ru Q, Yu H W, Huang Z W 2008 Chin.Phys. B 17 3422

    [19]

    Ouyang C Y, Shi S Q, Wang Z X, Huang X J, Chen L Q 2004Phys. Rev. B 69 104303

    [20]

    Shi S Q, Zhang H, Ke X Z, Ouyang C Y, Lei M S, Chen L Q 2009Phys. Lett. A 373 4096

    [21]

    Shi S Q, Ouyang C Y, Xiong Z H, Liu L J, Wang Z X, Li H, WangD S, Chen L Q, Huang X J 2005 Phys. Rev. B 71 144404

    [22]

    Ouyang C Y, Shi S Q, Wang Z X, Li H, Huang X J, Chen L Q2004 J. Phys.: Condens. Matter 16 2265

    [23]

    Wang D Y, Li H, Shi S Q, Huang X J, Chen L Q 2005 Electrochim.Acta 50 2955

    [24]

    Ouyang C Y, Du Y L, Shi S Q, Lei M S 2009 Phys. Lett. A 3732796

    [25]

    Shi S Q, Wang D S, Meng S, Chen L Q, Huang X J 2003 Phys.Rev. B 67 115130

    [26]

    Shi S Q, Ouyang C Y, Wang D S, Chen L Q, Huang X J 2003Solid State Commun. 126 531

    [27]

    Ouyang C Y, Shi S Q, Wang Z X, Huang X J, Chen L Q 2004 SolidState Commun. 130 501

    [28]

    Ouyang C Y, Du Y L, Shi S Q, Lei M S 2009 Phys. Lett. A 3732796

    [29]

    Ru Q, Tian Q, Hu S J, Zhao L Z 2011 Int. J. Miner. Metall. Mater.18 216

    [30]

    Ru Q, Peng W, Zhang Z W 2011 Rare Metals 30 1

    [31]

    Lee J W, Anguchamy Y K, Popov B N 2006 J. Power Scources162 1395

    [32]

    Liu H Y, Zhu Z Z, Yang Y 2008 Acta Phys. Sin. 57 5182 (in Chinese) [刘慧英, 朱梓忠, 杨勇 2008 物理学报 57 5182]

    [33]

    Liu H Y, Hou Z F, Zhu Z Z, Huang M C, Yang Y 2004 Acta Phys.Sin. 53 3868 (in Chinese) [刘慧英, 侯柱锋, 朱梓忠, 黄美纯, 杨勇 2004 物理学报 53 3868]

    [34]

    Kropf A J, Tostmann H, Johnson C S, Vaughey J T, Thackeray MM 2001 Electrochem. Commun. 3 244

  • [1] Chen Yu-Hong, Du Rui, Zhang Zhi-Long, Wang Wei-Chao, Zhang Cai-Rong, Kang Long, Luo Yong-Chun. First principles study of H2 molecule adsorption on Li3 N(110) surfaces. Acta Physica Sinica, 2011, 60(8): 086801. doi: 10.7498/aps.60.086801
    [2] Sun Yuan, Huang Zu-Fei, Ming Xing, Wang Chun-Zhong, Chen Gang, Fan Hou-Gang. First-principles investigation on the role of ions in ferroelectric transition of BiFeO3. Acta Physica Sinica, 2009, 58(1): 193-200. doi: 10.7498/aps.58.193.1
    [3] Zhang Hui, Zhang Guo-Ying, Xiao Ming-Zhu, Lu Guang-Xia, Zhang Ke, Zhu Sheng-Long. First-principles study on influence of alloying element substitution on dehydrogenation ability of Li4BN3H10 hydrogen storage materials. Acta Physica Sinica, 2011, 60(4): 047109. doi: 10.7498/aps.60.047109
    [4] Jia Ming-Zhen, Wang Hong-Yan, Chen Yuan-Zheng, Ma Cun-Liang, Wang Hui. First-principles study of electronic structures and electrochemical properties for Al, Fe and Mg doped Li2MnSiO4. Acta Physica Sinica, 2015, 64(8): 087101. doi: 10.7498/aps.64.087101
    [5] Liu Gui-Li, Zhang Guo-Ying, Bao Jun-Shan, Zhang Hui. A first principles study on the synergistic catalytic mechanism of anion, cation ions in TiF3, TiCl3 catalysts for LiBH4 hydrogen-storage materials. Acta Physica Sinica, 2014, 63(24): 248801. doi: 10.7498/aps.63.248801
    [6] Yang Guang-Min, Liang Zhi-Cong, Huang Hai-Hua. The first-principle calculation on the Li cluster adsorbed on graphene. Acta Physica Sinica, 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [7] Sheng Zhe, Dai Xian-Ying, Miao Dong-Ming, Wu Shu-Jing, Zhao Tian-Long, Hao Yue. First-principles study of hydrogen storage properties of silicene under different Li adsorption components. Acta Physica Sinica, 2018, 67(10): 107103. doi: 10.7498/aps.67.20172720
    [8] Zhang Yang, Huang Yan, Chen Xiao-Shuang, Lu Wei. The study of oxygen and sulfur adsorption on the InSb (110) surface, using first-principle energy calculations. Acta Physica Sinica, 2013, 62(20): 206102. doi: 10.7498/aps.62.206102
    [9] Li Wei-Shan, Zhao Ling-Zhi, Tan Chun-Lin, Hou Xian-Hua, Yu Hong-Wen, Hu She-Jun. Investigation of lithiation/delithiation mechanism in lithium-tin alloys for anode materials. Acta Physica Sinica, 2008, 57(4): 2374-2379. doi: 10.7498/aps.57.2374
    [10] Hu Jie-Qiong, Xie Ming, Zhang Ji-Ming, Liu Man-Men, Yang You-Cai, Chen Yong-Tai. First principles study of Au-Sn intermetallic compounds. Acta Physica Sinica, 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [11] Sun Zheng-Hao, Xiang Peng, Lan Min, Sun Yuan, Ming Xing, Meng Xing, Chen Gang. First-principles investigation of the electronic properties of multiferroic BaCoF4. Acta Physica Sinica, 2009, 58(8): 5653-5660. doi: 10.7498/aps.58.5653
    [12] Dou Jun-Qing, Kang Xue-Ya, Tuerdi Wumair, Hua Ning, Han Ying. The first principles and experimental study on Mn-doped LiFePO4. Acta Physica Sinica, 2012, 61(8): 087101. doi: 10.7498/aps.61.087101
    [13] Ni Jian-Gang, Liu Nuo, Yang Guo-Lai, Zhang Xi. First-principle study on electronic structure of BaTiO3 (001) surfaces. Acta Physica Sinica, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [14] Zhu Guo-Liang, Shu Da, Dai Yong-Bing, Wang Jun, Sun Bao-De. First principles study on substitution behaviour of Si in TiAl3. Acta Physica Sinica, 2009, 58(13): 210-S215. doi: 10.7498/aps.58.210
    [15] Li Shi-Na, Liu Yong. First-principles calculation of elastic and thermodynamic properties of copper nitride. Acta Physica Sinica, 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [16] Zhang Yi-Jun, Yan Jin-Liang, Zhao Gang, Xie Wan-Feng. First-principles calculation and experimental study of Si-doped β-Ga2O3. Acta Physica Sinica, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [17] Song Qing-Gong, Liu Li-Wei, Zhao Hui, Yan Hui-Yu, Du Quan-Guo. First-principles study on the electronic structure and optical properties of YFeO3. Acta Physica Sinica, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [18] Zhou Peng-Li, Shi Ru-Qian, He Jing-Fang, Zheng Shu-Kai. First principle study on B-Al co-doped 3C-SiC. Acta Physica Sinica, 2013, 62(23): 233101. doi: 10.7498/aps.62.233101
    [19] Fu Xian-Kai, Chen Wan-Qi, Jiang Zhong-Sheng, Yang Bo, Zhao Xiang, Zuo Liang. First-principles investigation on elastic, electronic, and optical properties of Ti3O5. Acta Physica Sinica, 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [20] Shi Yu, Bai Yang, Mo Li-Bin, Xiang Qing-Yun, Huang Ya-Li, Cao Jiang-Li. First-principles calculation for hydrogen-doped hematite. Acta Physica Sinica, 2015, 64(11): 116301. doi: 10.7498/aps.64.116301
  • Citation:
Metrics
  • Abstract views:  1883
  • PDF Downloads:  614
  • Cited By: 0
Publishing process
  • Received Date:  21 April 2011
  • Accepted Date:  15 June 2011
  • Published Online:  15 March 2012

The investigation of lithium insertion mechanism for Sn3InSb4 alloy based on first-principle calculation

  • 1. Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 51101062), the Educational Commission of Guangdong Province, China (Grant No. C10179), and the Science and Technology Project of Guangzhou City, China (Grant No. 11C52090680).

Abstract: The mechanism of Li insertion into Sn3InSb4 alloy is investigated by means of the first-principle plane-wave pseudo-potential method. The lithium intercalation formation, the theoretical capacity, the volume expansion ratio and the electronic structures are calculated. In the intercalation process, lithium atoms firstly fill the interstitial sites, and then lithium atoms continue to replace the metal atoms. Large expansion ratio from 11.74% to 43.40% would lead to the bad cycle stability for Sn3InSb4 alloy as the lithium battery electrode material. The conduct electricity is improved with lithium content increasing, then the conduct electricity decreases with interstitial sites being filled with lithium atoms and Sn-replacement reaction occurring.

Reference (34)

Catalog

    /

    返回文章
    返回