Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Shock timing experiment based on imaging velocity interferometer system for any reflector

Wang Feng Peng Xiao-Shi Mei Lu-Sheng Liu Shen-Ye Jiang Xiao-Hua Ding Yong-Kun

Shock timing experiment based on imaging velocity interferometer system for any reflector

Wang Feng, Peng Xiao-Shi, Mei Lu-Sheng, Liu Shen-Ye, Jiang Xiao-Hua, Ding Yong-Kun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The timing of multiple shock waves is crucial technique to the performance of inertial confinement fusion ignition targets. With the requirement for shock timing, the timing ability of Shen Guang-III prototype is analyzed by experimental data of two shots. The laser pulse in Shen Guang-III prototype is shaped in time scale, and the window material is z-cut quartz. The stream lines of two shock waves in quartz target are presented with Multi-1D program. Two steps of radiation drive two shock waves that coalesce in the quartz target, the resulting history, coalesce times, and transit times are observed in the stream lines. With the experiment results of two shots, the consistence of resulting history and coalesce times of two shock waves is provided under the same condition of laser pulse, target and diagnostic parameter. The differences in shock wave velocity, fringe contrast and quality occur at coalesce times of two shock waves. And the reflectivity of second shock wave does not increase compared with that of first shock wave. These experimental results and method provide the strong support for shock timing technique.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10805041), the Fund of the Science and Technology on Plasma Physics Laboratory, and the Science and Technology Developing Foundation of China Academic of Engineering and Physics(Grant No. 2011B0102020).
    [1]

    Munro D H, Celliers P M, Collins G W, Gold D M, Da Silva L B, Haan S W, Cauble R C, Hammel B A, Hsing W W 2006 Phys. Plasmas 8 2245

    [2]

    Boehly T R, Vianello E, Miller J E, Craxton R S, Collins T J B, Goncharov V N, Igumenshchev I V, Meyerhoferc D D, Hicks D G, Celliers P M, Collins G W 2006 Phys. Plasmas 13 056303

    [3]

    Hicks D G, Celliers P M, Collins G W, Eggert J H, Moon S J 2003 Phys. Rev. Lett. 91 035502

    [4]

    Celliers P M, Bradley D K, Collins G W, Hicks D G, Boehly T R, Armstrong W J 2004 Rev. Sci. Instrum. 75 4916

    [5]

    Theobald W, Miller J E, Boehly T R, Vianello E, Meyerhofer D D, Sangste T C, Eggert J, Celliers P M 2006 Phys. Plasmas 13 122702

    [6]

    Celliers P M, Collins G W, Da Silva L B, Gold D M, Cauble R, Wallace R J, Foord M E, Hammel B A 2000 Phys. Rev. Lett. 84 5564

    [7]

    Celliers P M, Collins G W, Hicks D G, Koenig M, Henry E, Benuzzi-Mounaix A, Batani D, Bradley D K, Da Silva L B, Wallace R J, Moon S J, Eggert J H, Lee K K M, Benedetti L R, Jeanloz R, Masclet I, Dague N, Marchet B, Rabec M, Gloahec Le, Reverdin C H, Pasley J, Willi O, Neely D, Danson C 2004 Phys. Plasmas 11 L41

    [8]

    Boehly T R, Munro D, Celliers P M, Olson R E, Hicks D G, Goncharov V N, Collins G W, Robey H F, Hu S X, Morozas J A, Sangster T C, Landen O L, Meyerhofer D D 2009 Phys. Plasmas 16 056302

    [9]

    Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H, Ding Y K 2010 Acta Optica Sinica 30 1327 (in Chinese) [王峰, 彭晓世, 刘慎业、 李永升, 蒋小华, 丁永坤 2010 光学学报 30 1327]

    [10]

    He M Q, Dong Q L, Sheg Z M, Weng S M, Chen M, Wu H C, Zhang J 2009 Acta Phys. Sin. 58 363 (in Chinese) [何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰 2009 物理学报 58 363]

    [11]

    Zhang Yi, Li Y T, Zheng Z Y, Liu F, Zhong J Y, Lin X X, Liu F, Lu X, Zhang J 2007 Chin. Phys. B 16 3728

    [12]

    Lu J X, Wang Z, Liang J, Shan Y S, Zhou C Z, Xiang Y H, Lu Z, Tang X Z 2006 High Power Laser and Particle Beams 18 799 (in Chinese) [路建新, 王钊, 梁晶, 单玉生, 周创志, 向益淮, 陆泽, 汤秀章 2006 强激光与粒子束 18 799]

    [13]

    Chen Y J, Yang Y Y, Zhuo Y M, Yang L M 2006 Optical Instruments 28 71 (in Chinese) [陈阳杰, 杨甬英, 卓永模, 杨李铭 2006 光学仪器 28 71]

    [14]

    Olson R E, Bradley D K, Rochau G A, Collins G W, Leeper R J, Suter L J 2006 Rev. Sci. Instrum. 77 10E523

    [15]

    Hicks D G, Boehly T R, Eggert J H, Miller J E, Celliers P M, Collins G W 2006 Phys. Rev. Lett. 97 (2) 025502

    [16]

    You B Shi 2007 The Journal of Light Scattering 19 173 (in Chinese) [石右彬 2007 光散射学报 19 173]

  • [1]

    Munro D H, Celliers P M, Collins G W, Gold D M, Da Silva L B, Haan S W, Cauble R C, Hammel B A, Hsing W W 2006 Phys. Plasmas 8 2245

    [2]

    Boehly T R, Vianello E, Miller J E, Craxton R S, Collins T J B, Goncharov V N, Igumenshchev I V, Meyerhoferc D D, Hicks D G, Celliers P M, Collins G W 2006 Phys. Plasmas 13 056303

    [3]

    Hicks D G, Celliers P M, Collins G W, Eggert J H, Moon S J 2003 Phys. Rev. Lett. 91 035502

    [4]

    Celliers P M, Bradley D K, Collins G W, Hicks D G, Boehly T R, Armstrong W J 2004 Rev. Sci. Instrum. 75 4916

    [5]

    Theobald W, Miller J E, Boehly T R, Vianello E, Meyerhofer D D, Sangste T C, Eggert J, Celliers P M 2006 Phys. Plasmas 13 122702

    [6]

    Celliers P M, Collins G W, Da Silva L B, Gold D M, Cauble R, Wallace R J, Foord M E, Hammel B A 2000 Phys. Rev. Lett. 84 5564

    [7]

    Celliers P M, Collins G W, Hicks D G, Koenig M, Henry E, Benuzzi-Mounaix A, Batani D, Bradley D K, Da Silva L B, Wallace R J, Moon S J, Eggert J H, Lee K K M, Benedetti L R, Jeanloz R, Masclet I, Dague N, Marchet B, Rabec M, Gloahec Le, Reverdin C H, Pasley J, Willi O, Neely D, Danson C 2004 Phys. Plasmas 11 L41

    [8]

    Boehly T R, Munro D, Celliers P M, Olson R E, Hicks D G, Goncharov V N, Collins G W, Robey H F, Hu S X, Morozas J A, Sangster T C, Landen O L, Meyerhofer D D 2009 Phys. Plasmas 16 056302

    [9]

    Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H, Ding Y K 2010 Acta Optica Sinica 30 1327 (in Chinese) [王峰, 彭晓世, 刘慎业、 李永升, 蒋小华, 丁永坤 2010 光学学报 30 1327]

    [10]

    He M Q, Dong Q L, Sheg Z M, Weng S M, Chen M, Wu H C, Zhang J 2009 Acta Phys. Sin. 58 363 (in Chinese) [何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰 2009 物理学报 58 363]

    [11]

    Zhang Yi, Li Y T, Zheng Z Y, Liu F, Zhong J Y, Lin X X, Liu F, Lu X, Zhang J 2007 Chin. Phys. B 16 3728

    [12]

    Lu J X, Wang Z, Liang J, Shan Y S, Zhou C Z, Xiang Y H, Lu Z, Tang X Z 2006 High Power Laser and Particle Beams 18 799 (in Chinese) [路建新, 王钊, 梁晶, 单玉生, 周创志, 向益淮, 陆泽, 汤秀章 2006 强激光与粒子束 18 799]

    [13]

    Chen Y J, Yang Y Y, Zhuo Y M, Yang L M 2006 Optical Instruments 28 71 (in Chinese) [陈阳杰, 杨甬英, 卓永模, 杨李铭 2006 光学仪器 28 71]

    [14]

    Olson R E, Bradley D K, Rochau G A, Collins G W, Leeper R J, Suter L J 2006 Rev. Sci. Instrum. 77 10E523

    [15]

    Hicks D G, Boehly T R, Eggert J H, Miller J E, Celliers P M, Collins G W 2006 Phys. Rev. Lett. 97 (2) 025502

    [16]

    You B Shi 2007 The Journal of Light Scattering 19 173 (in Chinese) [石右彬 2007 光散射学报 19 173]

  • [1] Wang Feng, Peng Xiao-Shi, Liu Shen-Ye, Jiang Xiao-Hua, Xu Tao, Ding Yong-Kun, Zhang Bao-Han. Shock experiment with sandwiched target in laser indirect-drive experiment. Acta Physica Sinica, 2011, 60(11): 115203. doi: 10.7498/aps.60.115203
    [2] Wang Feng, Peng Xiao-Shi, Liu Shen-Ye, Li Yong-Sheng, Jiang Xiao-Hua, Ding Yong-Kun. Direct measurement technique for shock wave velocity under super high pressure. Acta Physica Sinica, 2011, 60(2): 025202. doi: 10.7498/aps.60.025202
    [3] Wang Feng, Peng Xiao-Shi, Liu Shen-Ye, Jiang Xiao-Hua, Ding Yong-Kun. Shock timing experiment in polystyrene target based on imaging velocity interferometer system for any reflector. Acta Physica Sinica, 2011, 60(8): 085203. doi: 10.7498/aps.60.085203
    [4] Chang Hong, Yang Fu-Gui, Dong Lei, Wang An-Ting, Xie Jian-Ping, Ming Hai. Effect of structure and size of laser spot on speckle contrast in laser scanning display. Acta Physica Sinica, 2010, 59(7): 4634-4639. doi: 10.7498/aps.59.4634
    [5] Song Hong-Sheng, Zhuang Qiao, Liu Gui-Yuan, Qin Xi-Feng, Cheng Chuan-Fu. Statistical characteristics and variation of speckle intensity in deep fresnel diffraction region. Acta Physica Sinica, 2014, 63(9): 094201. doi: 10.7498/aps.63.094201
    [6] Song Hong-Sheng, Liu Gui-Yuan, Zhang Ning-Yu, Zhuang Qiao, Cheng Chuan-Fu. New features of the speckle phase singularity produced in large angle scattering. Acta Physica Sinica, 2015, 64(8): 084210. doi: 10.7498/aps.64.084210
    [7] Song Hong-Sheng, Cheng Chuan-Fu, Liu Man, Teng Shu-Yun, Zhang Ning-Yu. Experimental study on phase vortices of speckles and their propagation properties. Acta Physica Sinica, 2009, 58(6): 3887-3896. doi: 10.7498/aps.58.3887
    [8] Song Hong-Sheng, Cheng Chuan-Fu, Teng Shu-Yun, Liu Man, Liu Gui-Yuan, Zhang Ning-Yu. Experimental studies on the statistical functions of speckle fields based on the extraction of the complex amplitudes by use of interference beam. Acta Physica Sinica, 2009, 58(11): 7654-7661. doi: 10.7498/aps.58.7654
    [9] Yang Chun-Lin. Propagation characteristics of speckle field in plasma. Acta Physica Sinica, 2018, 67(8): 085201. doi: 10.7498/aps.67.20171795
    [10] Cui Xin-Lin, Zhu Wen-Jun, Deng Xiao-Liang, Li Ying-Jun, He Hong-Liang. Molecular dynamic simulation of shock-induced phase transformation in single crystal iron with nano-void inclusion. Acta Physica Sinica, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [11] Yu Yu-Ying, Tan Hua, Hu Jian-Bo, Dai Cheng-Da, Chen Da-Nian, Wang Huan-Ran. Effective shear modulus in shock-compressed aluminum. Acta Physica Sinica, 2008, 57(4): 2352-2357. doi: 10.7498/aps.57.2352
    [12] Yu Yin, Wang Wen-Qiang, Yang Jia, Zhang You-Jun, Jiang Dong-Dong, He Hong-Liang. Mesoscopic picture of fracture in porous brittle material under shock wave compression. Acta Physica Sinica, 2012, 61(4): 048103. doi: 10.7498/aps.61.048103
    [13] Fu Si-Zu, Huang Xiu-Guang, Wu Jiang, Wang Rui-Rong, Ma Min-Xun, He Ju-Hua, Ye Jun-Jian, Gu Yuan. Experimental study of shock wave propagating character in targets driven by an i nclined-incident laser. Acta Physica Sinica, 2003, 52(8): 1877-1881. doi: 10.7498/aps.52.1877
    [14] Jiang Dong-Dong, Du Jin-Mei, Gu Yan, Feng Yu-Jun. Resistivity of PZT 95/5 ferroelectric ceramic under shock wave compression. Acta Physica Sinica, 2008, 57(1): 566-570. doi: 10.7498/aps.57.566
    [15] ZHANG JIE, WANG WEI. NUMERICAL SIMULATION STUDY OF LASER-DRIVEN SHOCKWAVE PROPAGATION IN PLANAR Al FOIL TARGETS. Acta Physica Sinica, 2001, 50(4): 741-747. doi: 10.7498/aps.50.741
    [16] Jiang Shao-En, Li Wen-Hong, Sun Ke-Xi, Jiang Xiao-Hua, Liu Yong-Gang, Cui Yan-Li, Chen Jiu-Sen, Ding Yong-Kun, Zheng Zhi-Jian. Shock wave driven by x-ray radiation from cylindrical hohlraum on Shenguang Ⅱlaser. Acta Physica Sinica, 2004, 53(10): 3424-3428. doi: 10.7498/aps.53.3424
    [17] Wu You-Cheng, Liu Gao-Min, Dai Wen-Feng, Gao Zhi-Peng, He Hong-Liang, Hao Shi-Rong, Deng Jian-Jun. Dynamic resistivity of Pb(Zr0.95Ti0.05)O3 depolarized ferroelectric under shock wave compression. Acta Physica Sinica, 2017, 66(4): 047201. doi: 10.7498/aps.66.047201
    [18] Feng Ning-Bo, Gu Yan, Liu Yu-Sheng, Nie Heng-Chang, Chen Xue-Feng, Wang Gen-Shui, He Hong-Liang, Dong Xian-Lin. Porosity effects on depoling characteristics of Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics under shock wave load. Acta Physica Sinica, 2010, 59(12): 8897-8902. doi: 10.7498/aps.59.8897
    [19] Ma Wen, Zhu Wen-Jun, Zhang Ya-Lin, Jing Fu-Qian. Shock-induced phase transformation in nanocrystalline iron. Acta Physica Sinica, 2011, 60(6): 066404. doi: 10.7498/aps.60.066404
    [20] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Shock-induced phase transformations of iron studied with molecular dynamics. Acta Physica Sinica, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
  • Citation:
Metrics
  • Abstract views:  2225
  • PDF Downloads:  546
  • Cited By: 0
Publishing process
  • Received Date:  27 May 2011
  • Accepted Date:  19 October 2011
  • Published Online:  05 July 2012

Shock timing experiment based on imaging velocity interferometer system for any reflector

  • 1. Research Center of Laser Fusion, China Academic of Engineering and Physics, Mianyang 621900, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 10805041), the Fund of the Science and Technology on Plasma Physics Laboratory, and the Science and Technology Developing Foundation of China Academic of Engineering and Physics(Grant No. 2011B0102020).

Abstract: The timing of multiple shock waves is crucial technique to the performance of inertial confinement fusion ignition targets. With the requirement for shock timing, the timing ability of Shen Guang-III prototype is analyzed by experimental data of two shots. The laser pulse in Shen Guang-III prototype is shaped in time scale, and the window material is z-cut quartz. The stream lines of two shock waves in quartz target are presented with Multi-1D program. Two steps of radiation drive two shock waves that coalesce in the quartz target, the resulting history, coalesce times, and transit times are observed in the stream lines. With the experiment results of two shots, the consistence of resulting history and coalesce times of two shock waves is provided under the same condition of laser pulse, target and diagnostic parameter. The differences in shock wave velocity, fringe contrast and quality occur at coalesce times of two shock waves. And the reflectivity of second shock wave does not increase compared with that of first shock wave. These experimental results and method provide the strong support for shock timing technique.

Reference (16)

Catalog

    /

    返回文章
    返回