Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of (InAs)1/(GaSb)1 superlattice atomic chains

Sun Wei-Feng

Citation:

First-principles study of (InAs)1/(GaSb)1 superlattice atomic chains

Sun Wei-Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The atomic structure, the mechanical properties, the electronic band structure, and the phonon structure of (InAs)1/(GaSb)1 superlattice atomic chain are investigated by first-principles pseudopotential plane wave method, and the quantum transport properties are also calculated by the density functional theory numerical atomic orbit pseudopotential method in combination with nonequilibrium Green's function formalism. Compared with two-dimensional layer structural (InAs)1/(GaSb)1 superlattice, the (InAs)1/(GaSb)1 superlattice atomic chains have obviously different band structures, and represent metal energy band characteristics in certain conditions. The calculated mechanical strength of (InAs)1/(GaSb)1 superlattice atomic chains indicates that such structures can sustain the strain as high as =0.19. The structural stability of (InAs)1/(GaSb)1 superlattice atomic chains is investigated by full Brillouin zone analysis for phonon structure. The electron transport calculations for (InAs)1/(GaSb)1 superlattice atomic chain segments in between Al electrodes show that the conductance exhibits nontrivial features as the chain length or strain is varied. The calculated optical absorption spectra represent precipitous cutoff absorptions in infrared regime, and the cutoff wavelength varies with chain structure. InAs/GaSb superlattice atomic chains are predicted to be applied to infrared optoelectronic nanodevices, modifying optoelectronic response wavelength range by changing the structures of superlattice atomic chains.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50502014, 50972032) and the National High Technology Research and Development Program of China (Grant No. 2009AA03Z407).
    [1]

    Bowler D R 2004 J. Phys. Condens. Matter 16 R721

    [2]

    Okano S, Shiraishi K, Oshiyama A 2004 Phys. Rev. B 69 045401

    [3]

    Senger R T, Dag S, Ciraci S 2004 Phys. Rev. Lett. 93 196807

    [4]

    Mehrez H, Ciraci S 1997 Phys. Rev. B 56 12632

    [5]

    Agrait N, Rubio G, Vieira S 1995 Phys. Rev. Lett. 74 3995

    [6]

    Bhunia S, Kawamura T, Watanabe Y, Fujikawa S, Tokushima K 2003 Appl. Phys. Lett. 83 3371

    [7]

    Zhang X T, Liu Z, Ip K M, Leung Y P, Li Q, Hark S K 2004 J. Appl. Phys. 95 5752

    [8]

    Nilius N, Wallis T M, Ho W 2002 Science 297 1853

    [9]

    Grinyaev S N, Kataev S G 1993 Physica B 191 317

    [10]

    Rubio G, AgraÍt N, Vieira S 1996 Phys. Rev. Lett. 76 2302

    [11]

    Stafford C A, Baeriswyl D, Burki J 1997 Phys. Rev. Lett. 79 2863

    [12]

    Ribeiro F J, Cohen M L 2003 Phys. Rev. B 68 035423

    [13]

    Zgirski M, Riikonen K P, Touboltsev V, Arutyunov K Y 2008 Phys. Rev. B 77 054508

    [14]

    Rodrigues V, Fuhrer T, Ugarte D 2000 Phys. Rev. Lett. 85 4124

    [15]

    Voit J 1995 Rep. Prog. Phys. 58 977

    [16]

    Kopietz P, Meden V, Schönhammer K 1997 Phys. Rev. B 56 7232

    [17]

    Bockrath M, Cobden D H, Lu J, Rinzler A G, Smalley R E, Balents L, McEuen P L 1999 Nature 397 598

    [18]

    Auslaender O M, Steinberg H, Yacoby A, Tserkovnyak Y, Halperin B I, Baldwin K W, Pfeiffer L N, West K W 2005 Science 308 88

    [19]

    Claessen R, Sing M, Schwingenschlögl U, Blaha P, Dressel M, Jacobsen C S 2002 Phys. Rev. Lett. 88 096402

    [20]

    Schäfer J, Sing M, Claessen R, Rotenberg E, Zhou X J, Thorne R E, Kevan S D 2003 Phys. Rev. Lett. 91 066401

    [21]

    Shaw M J, Corbin E A, Kitchin M R, Jaros M 2001 Microelectron J. 32 593

    [22]

    Brown G J, Szmulowicz F, Haugan H, Mahalingam K, Houston S 2005 Microelectron. J. 36 256

    [23]

    Rogalski A, Martyniuk P 2006 Infrared Phys. Technol. 48 39

    [24]

    Tavazza F, Levine L E, Chaka A M 2009 J. Appl. Phys. 106 043522

    [25]

    Mozos J L, Wan C C, Taraschi G, Wang J, Guo H 1997 Phys. Rev. B 56 R4351

    [26]

    Kresse G, Furthm黮ler J 1996 Phys. Rev. B 54 11169

    [27]

    Clarke L J, Štich I, Payne M C 1992 Comp. Phys. Comm. 72 14

    [28]

    Wu Z G, Cohen R E 2006 Phys. Rev. B 73 235116

    [29]

    Aryasetiawan F, Gunnarsson O 1998 Rep. Prog. Phys. 61 237

    [30]

    Eiguren A, Ambrosch-Draxl C, Echenique P M 2009 Phys. Rev. B 79 245103

    [31]

    Spataru C D, Ismail-Beigi S, Benedict L X, Louie S G 2004 Phys. Rev. Lett. 92 077402

    [32]

    Ullrich C A, Vignale G 2002 Phys. Rev. B 65 245102

    [33]

    Levine Z H, Allan D C 1989 Phys. Rev. Lett. 63 1719

    [34]

    Delley B 2002 Phys. Rev. B 66 155125

    [35]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [36]

    Baker J, Kessi A, Delley B 1996 J. Chem. Phys. 105 192

    [37]

    De Gironcoli S 1995 Phys. Rev. B 51 6773

    [38]

    Hartwigsen C, Goedecker S, Hutter J 1998 Phys. Rev. B 58 3641

    [39]

    Brandbyge M, Mozos J L, Ordej髇 P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [40]

    http//www.quantumwise.com/, Virtual NanoLab Tutorial, Version 2008.10, p54

    [41]

    Fröhlich H 1954 Proc. R. Soc. London Ser. A 223 296

    [42]

    Batra I P1990 Phys. Rev. B 42 9162

    [43]

    Sanchez-Portal D, Artacho E, Soler J M, Rubio A, Ordejon P 1999 Phys. Rev. B 59 12678

    [44]

    Abdurahman A, Shukla A, Dolg M 2002 Phys. Rev. B 65 115106

    [45]

    Lang N D, Avouris P H 2000 Phys. Rev. Lett. 84 358

  • [1]

    Bowler D R 2004 J. Phys. Condens. Matter 16 R721

    [2]

    Okano S, Shiraishi K, Oshiyama A 2004 Phys. Rev. B 69 045401

    [3]

    Senger R T, Dag S, Ciraci S 2004 Phys. Rev. Lett. 93 196807

    [4]

    Mehrez H, Ciraci S 1997 Phys. Rev. B 56 12632

    [5]

    Agrait N, Rubio G, Vieira S 1995 Phys. Rev. Lett. 74 3995

    [6]

    Bhunia S, Kawamura T, Watanabe Y, Fujikawa S, Tokushima K 2003 Appl. Phys. Lett. 83 3371

    [7]

    Zhang X T, Liu Z, Ip K M, Leung Y P, Li Q, Hark S K 2004 J. Appl. Phys. 95 5752

    [8]

    Nilius N, Wallis T M, Ho W 2002 Science 297 1853

    [9]

    Grinyaev S N, Kataev S G 1993 Physica B 191 317

    [10]

    Rubio G, AgraÍt N, Vieira S 1996 Phys. Rev. Lett. 76 2302

    [11]

    Stafford C A, Baeriswyl D, Burki J 1997 Phys. Rev. Lett. 79 2863

    [12]

    Ribeiro F J, Cohen M L 2003 Phys. Rev. B 68 035423

    [13]

    Zgirski M, Riikonen K P, Touboltsev V, Arutyunov K Y 2008 Phys. Rev. B 77 054508

    [14]

    Rodrigues V, Fuhrer T, Ugarte D 2000 Phys. Rev. Lett. 85 4124

    [15]

    Voit J 1995 Rep. Prog. Phys. 58 977

    [16]

    Kopietz P, Meden V, Schönhammer K 1997 Phys. Rev. B 56 7232

    [17]

    Bockrath M, Cobden D H, Lu J, Rinzler A G, Smalley R E, Balents L, McEuen P L 1999 Nature 397 598

    [18]

    Auslaender O M, Steinberg H, Yacoby A, Tserkovnyak Y, Halperin B I, Baldwin K W, Pfeiffer L N, West K W 2005 Science 308 88

    [19]

    Claessen R, Sing M, Schwingenschlögl U, Blaha P, Dressel M, Jacobsen C S 2002 Phys. Rev. Lett. 88 096402

    [20]

    Schäfer J, Sing M, Claessen R, Rotenberg E, Zhou X J, Thorne R E, Kevan S D 2003 Phys. Rev. Lett. 91 066401

    [21]

    Shaw M J, Corbin E A, Kitchin M R, Jaros M 2001 Microelectron J. 32 593

    [22]

    Brown G J, Szmulowicz F, Haugan H, Mahalingam K, Houston S 2005 Microelectron. J. 36 256

    [23]

    Rogalski A, Martyniuk P 2006 Infrared Phys. Technol. 48 39

    [24]

    Tavazza F, Levine L E, Chaka A M 2009 J. Appl. Phys. 106 043522

    [25]

    Mozos J L, Wan C C, Taraschi G, Wang J, Guo H 1997 Phys. Rev. B 56 R4351

    [26]

    Kresse G, Furthm黮ler J 1996 Phys. Rev. B 54 11169

    [27]

    Clarke L J, Štich I, Payne M C 1992 Comp. Phys. Comm. 72 14

    [28]

    Wu Z G, Cohen R E 2006 Phys. Rev. B 73 235116

    [29]

    Aryasetiawan F, Gunnarsson O 1998 Rep. Prog. Phys. 61 237

    [30]

    Eiguren A, Ambrosch-Draxl C, Echenique P M 2009 Phys. Rev. B 79 245103

    [31]

    Spataru C D, Ismail-Beigi S, Benedict L X, Louie S G 2004 Phys. Rev. Lett. 92 077402

    [32]

    Ullrich C A, Vignale G 2002 Phys. Rev. B 65 245102

    [33]

    Levine Z H, Allan D C 1989 Phys. Rev. Lett. 63 1719

    [34]

    Delley B 2002 Phys. Rev. B 66 155125

    [35]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [36]

    Baker J, Kessi A, Delley B 1996 J. Chem. Phys. 105 192

    [37]

    De Gironcoli S 1995 Phys. Rev. B 51 6773

    [38]

    Hartwigsen C, Goedecker S, Hutter J 1998 Phys. Rev. B 58 3641

    [39]

    Brandbyge M, Mozos J L, Ordej髇 P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [40]

    http//www.quantumwise.com/, Virtual NanoLab Tutorial, Version 2008.10, p54

    [41]

    Fröhlich H 1954 Proc. R. Soc. London Ser. A 223 296

    [42]

    Batra I P1990 Phys. Rev. B 42 9162

    [43]

    Sanchez-Portal D, Artacho E, Soler J M, Rubio A, Ordejon P 1999 Phys. Rev. B 59 12678

    [44]

    Abdurahman A, Shukla A, Dolg M 2002 Phys. Rev. B 65 115106

    [45]

    Lang N D, Avouris P H 2000 Phys. Rev. Lett. 84 358

  • [1] Ding Jin-Ting, Hu Pei-Jia, Guo Ai-Min. Electron transport in graphene nanoribbons with line defects. Acta Physica Sinica, 2023, 72(15): 157301. doi: 10.7498/aps.72.20230502
    [2] Liu Tian, Li Zong-Liang, Zhang Yan-Hui, Lan Kang. Study of quantum speed limit of of transport process of single quantum dot system in dissipative environment. Acta Physica Sinica, 2023, 72(4): 047301. doi: 10.7498/aps.72.20222159
    [3] Fang Jing-Yun, Sun Qing-Feng. Thermal dissipation of electric transport in graphene p-n junctions in magnetic field. Acta Physica Sinica, 2022, 71(12): 127203. doi: 10.7498/aps.71.20220029
    [4] Hu Hai-Tao, Guo Ai-Min. Quantum transport properties of bilayer borophene nanoribbons. Acta Physica Sinica, 2022, 71(22): 227301. doi: 10.7498/aps.71.20221304
    [5] Yan Jie, Wei Miao-Miao, Xing Yan-Xia. Dephasing effect of quantum spin topological states in HgTe/CdTe quantum well. Acta Physica Sinica, 2019, 68(22): 227301. doi: 10.7498/aps.68.20191072
    [6] Wu Xin-Yu, Han Wei-Hua, Yang Fu-Hua. Quantum transport relating to impurity quantum dots in silicon nanostructure transistor. Acta Physica Sinica, 2019, 68(8): 087301. doi: 10.7498/aps.68.20190095
    [7] Yan Rui, Wu Ze-Wen, Xie Wen-Ze, Li Dan, Wang Yin. First-principles study on transport property of molecular} device with non-collinear electrodes. Acta Physica Sinica, 2018, 67(9): 097301. doi: 10.7498/aps.67.20172221
    [8] Liu Fu-Ti, Zhang Shu-Hua, Cheng Yan, Chen Xiang-Rong, Cheng Xiao-Hong. Theoretical calculation of electron transport properties of atomic chains of (GaAs)n (n=1-4). Acta Physica Sinica, 2016, 65(10): 106201. doi: 10.7498/aps.65.106201
    [9] Zhang Cai-Xia, Guo Hong, Yang Zhi, Luo You-Hua. The magnetic and quantum transport properties of sandwich-structured Tan(B3N3H6)n+1 clusters. Acta Physica Sinica, 2012, 61(19): 193601. doi: 10.7498/aps.61.193601
    [10] Zhang Guo-Lian, Lu Yao, Jiang Lei, Wang Zhe, Zhang Chang-Wen, Wang Pei-Ji. First-principle study on optoelectronic and magnetic properties of Sn(O1-xNx)2. Acta Physica Sinica, 2012, 61(11): 117101. doi: 10.7498/aps.61.117101
    [11] Zhang Zhen-Duo, Hou Qing-Yu, Li Cong, Zhao Chun-Wang. First-principles study of the electronic structure and absorption spectrum of heavily Nd-doped anatase TiO2. Acta Physica Sinica, 2012, 61(11): 117102. doi: 10.7498/aps.61.117102
    [12] Sun Wei-Feng, Zheng Xiao-Xia. First-principles study of interface relaxation effects on interface structure, band structure and optical property of InAs/GaSb superlattices. Acta Physica Sinica, 2012, 61(11): 117301. doi: 10.7498/aps.61.117301
    [13] Sun Wei-Feng, Zheng Xiao-Xia. First-principles study of (InAs)1/(GaSb)1 superlattice nanowires. Acta Physica Sinica, 2012, 61(11): 117103. doi: 10.7498/aps.61.117103
    [14] Fu Bang, Deng Wen-Ji. General solutions to spin transportation of electrons through equilateral polygon quantum rings with Rashba spin-orbit interaction. Acta Physica Sinica, 2010, 59(4): 2739-2745. doi: 10.7498/aps.59.2739
    [15] Wang Zhi-Gang, Zhang Yang, Wen Yu-Hua, Zhu Zi-Zhong. First-principles calculation of structural stability and electronic properties of ZnO atomic chains. Acta Physica Sinica, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [16] Li Peng, Deng Wen-Ji. Exact solutions to the transportation of electrons through equilateral polygonal quantum rings with Rashba spin-orbit interaction. Acta Physica Sinica, 2009, 58(4): 2713-2719. doi: 10.7498/aps.58.2713
    [17] Yin Yong-Qi, Li Hua, Ma Jia-Ning, He Ze-Long, Wang Xuan-Zhang. Quantum transport of multi-terminal coupled-quantum-dot-molecular bridge. Acta Physica Sinica, 2009, 58(6): 4162-4167. doi: 10.7498/aps.58.4162
    [18] Liu Jun-Min, Sun Li-Zhong, Chen Yuan-Ping, Zhang Kai-Wang, Yuan Hui-Qiu, Zhong Jian-Xin. Electronic structure and bonding mechanism of La-Ir-Si: A first-principles study. Acta Physica Sinica, 2009, 58(11): 7826-7832. doi: 10.7498/aps.58.7826
    [19] Xu Xiao-Guang, Wang Chun-Zhong, Liu Wei, Meng Xing, Sun Yuan, Chen Gang. Ab initio study of the effects of Mg doping on electronic structure of Li(Co , Al)O2. Acta Physica Sinica, 2005, 54(1): 313-316. doi: 10.7498/aps.54.313
    [20] Xu Xiao-Guang, Wei Ying-Jin, Meng Xing, Wang Chun-Zhong, Huang Zu-Fei, Chen Gang. Ab initio study of the effects of Mg, Al dopingon the electronic structure of LiCoO2. Acta Physica Sinica, 2004, 53(1): 210-213. doi: 10.7498/aps.53.210
Metrics
  • Abstract views:  9385
  • PDF Downloads:  827
  • Cited By: 0
Publishing process
  • Received Date:  07 September 2011
  • Accepted Date:  05 June 2012
  • Published Online:  05 June 2012

/

返回文章
返回