Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of (InAs)1/(GaSb)1 superlattice atomic chains

Sun Wei-Feng

First-principles study of (InAs)1/(GaSb)1 superlattice atomic chains

Sun Wei-Feng
PDF
Get Citation
  • The atomic structure, the mechanical properties, the electronic band structure, and the phonon structure of (InAs)1/(GaSb)1 superlattice atomic chain are investigated by first-principles pseudopotential plane wave method, and the quantum transport properties are also calculated by the density functional theory numerical atomic orbit pseudopotential method in combination with nonequilibrium Green's function formalism. Compared with two-dimensional layer structural (InAs)1/(GaSb)1 superlattice, the (InAs)1/(GaSb)1 superlattice atomic chains have obviously different band structures, and represent metal energy band characteristics in certain conditions. The calculated mechanical strength of (InAs)1/(GaSb)1 superlattice atomic chains indicates that such structures can sustain the strain as high as =0.19. The structural stability of (InAs)1/(GaSb)1 superlattice atomic chains is investigated by full Brillouin zone analysis for phonon structure. The electron transport calculations for (InAs)1/(GaSb)1 superlattice atomic chain segments in between Al electrodes show that the conductance exhibits nontrivial features as the chain length or strain is varied. The calculated optical absorption spectra represent precipitous cutoff absorptions in infrared regime, and the cutoff wavelength varies with chain structure. InAs/GaSb superlattice atomic chains are predicted to be applied to infrared optoelectronic nanodevices, modifying optoelectronic response wavelength range by changing the structures of superlattice atomic chains.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50502014, 50972032) and the National High Technology Research and Development Program of China (Grant No. 2009AA03Z407).
    [1]

    Bowler D R 2004 J. Phys. Condens. Matter 16 R721

    [2]

    Okano S, Shiraishi K, Oshiyama A 2004 Phys. Rev. B 69 045401

    [3]

    Senger R T, Dag S, Ciraci S 2004 Phys. Rev. Lett. 93 196807

    [4]

    Mehrez H, Ciraci S 1997 Phys. Rev. B 56 12632

    [5]

    Agrait N, Rubio G, Vieira S 1995 Phys. Rev. Lett. 74 3995

    [6]

    Bhunia S, Kawamura T, Watanabe Y, Fujikawa S, Tokushima K 2003 Appl. Phys. Lett. 83 3371

    [7]

    Zhang X T, Liu Z, Ip K M, Leung Y P, Li Q, Hark S K 2004 J. Appl. Phys. 95 5752

    [8]

    Nilius N, Wallis T M, Ho W 2002 Science 297 1853

    [9]

    Grinyaev S N, Kataev S G 1993 Physica B 191 317

    [10]

    Rubio G, AgraÍt N, Vieira S 1996 Phys. Rev. Lett. 76 2302

    [11]

    Stafford C A, Baeriswyl D, Burki J 1997 Phys. Rev. Lett. 79 2863

    [12]

    Ribeiro F J, Cohen M L 2003 Phys. Rev. B 68 035423

    [13]

    Zgirski M, Riikonen K P, Touboltsev V, Arutyunov K Y 2008 Phys. Rev. B 77 054508

    [14]

    Rodrigues V, Fuhrer T, Ugarte D 2000 Phys. Rev. Lett. 85 4124

    [15]

    Voit J 1995 Rep. Prog. Phys. 58 977

    [16]

    Kopietz P, Meden V, Schönhammer K 1997 Phys. Rev. B 56 7232

    [17]

    Bockrath M, Cobden D H, Lu J, Rinzler A G, Smalley R E, Balents L, McEuen P L 1999 Nature 397 598

    [18]

    Auslaender O M, Steinberg H, Yacoby A, Tserkovnyak Y, Halperin B I, Baldwin K W, Pfeiffer L N, West K W 2005 Science 308 88

    [19]

    Claessen R, Sing M, Schwingenschlögl U, Blaha P, Dressel M, Jacobsen C S 2002 Phys. Rev. Lett. 88 096402

    [20]

    Schäfer J, Sing M, Claessen R, Rotenberg E, Zhou X J, Thorne R E, Kevan S D 2003 Phys. Rev. Lett. 91 066401

    [21]

    Shaw M J, Corbin E A, Kitchin M R, Jaros M 2001 Microelectron J. 32 593

    [22]

    Brown G J, Szmulowicz F, Haugan H, Mahalingam K, Houston S 2005 Microelectron. J. 36 256

    [23]

    Rogalski A, Martyniuk P 2006 Infrared Phys. Technol. 48 39

    [24]

    Tavazza F, Levine L E, Chaka A M 2009 J. Appl. Phys. 106 043522

    [25]

    Mozos J L, Wan C C, Taraschi G, Wang J, Guo H 1997 Phys. Rev. B 56 R4351

    [26]

    Kresse G, Furthm黮ler J 1996 Phys. Rev. B 54 11169

    [27]

    Clarke L J, Štich I, Payne M C 1992 Comp. Phys. Comm. 72 14

    [28]

    Wu Z G, Cohen R E 2006 Phys. Rev. B 73 235116

    [29]

    Aryasetiawan F, Gunnarsson O 1998 Rep. Prog. Phys. 61 237

    [30]

    Eiguren A, Ambrosch-Draxl C, Echenique P M 2009 Phys. Rev. B 79 245103

    [31]

    Spataru C D, Ismail-Beigi S, Benedict L X, Louie S G 2004 Phys. Rev. Lett. 92 077402

    [32]

    Ullrich C A, Vignale G 2002 Phys. Rev. B 65 245102

    [33]

    Levine Z H, Allan D C 1989 Phys. Rev. Lett. 63 1719

    [34]

    Delley B 2002 Phys. Rev. B 66 155125

    [35]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [36]

    Baker J, Kessi A, Delley B 1996 J. Chem. Phys. 105 192

    [37]

    De Gironcoli S 1995 Phys. Rev. B 51 6773

    [38]

    Hartwigsen C, Goedecker S, Hutter J 1998 Phys. Rev. B 58 3641

    [39]

    Brandbyge M, Mozos J L, Ordej髇 P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [40]

    http//www.quantumwise.com/, Virtual NanoLab Tutorial, Version 2008.10, p54

    [41]

    Fröhlich H 1954 Proc. R. Soc. London Ser. A 223 296

    [42]

    Batra I P1990 Phys. Rev. B 42 9162

    [43]

    Sanchez-Portal D, Artacho E, Soler J M, Rubio A, Ordejon P 1999 Phys. Rev. B 59 12678

    [44]

    Abdurahman A, Shukla A, Dolg M 2002 Phys. Rev. B 65 115106

    [45]

    Lang N D, Avouris P H 2000 Phys. Rev. Lett. 84 358

  • [1]

    Bowler D R 2004 J. Phys. Condens. Matter 16 R721

    [2]

    Okano S, Shiraishi K, Oshiyama A 2004 Phys. Rev. B 69 045401

    [3]

    Senger R T, Dag S, Ciraci S 2004 Phys. Rev. Lett. 93 196807

    [4]

    Mehrez H, Ciraci S 1997 Phys. Rev. B 56 12632

    [5]

    Agrait N, Rubio G, Vieira S 1995 Phys. Rev. Lett. 74 3995

    [6]

    Bhunia S, Kawamura T, Watanabe Y, Fujikawa S, Tokushima K 2003 Appl. Phys. Lett. 83 3371

    [7]

    Zhang X T, Liu Z, Ip K M, Leung Y P, Li Q, Hark S K 2004 J. Appl. Phys. 95 5752

    [8]

    Nilius N, Wallis T M, Ho W 2002 Science 297 1853

    [9]

    Grinyaev S N, Kataev S G 1993 Physica B 191 317

    [10]

    Rubio G, AgraÍt N, Vieira S 1996 Phys. Rev. Lett. 76 2302

    [11]

    Stafford C A, Baeriswyl D, Burki J 1997 Phys. Rev. Lett. 79 2863

    [12]

    Ribeiro F J, Cohen M L 2003 Phys. Rev. B 68 035423

    [13]

    Zgirski M, Riikonen K P, Touboltsev V, Arutyunov K Y 2008 Phys. Rev. B 77 054508

    [14]

    Rodrigues V, Fuhrer T, Ugarte D 2000 Phys. Rev. Lett. 85 4124

    [15]

    Voit J 1995 Rep. Prog. Phys. 58 977

    [16]

    Kopietz P, Meden V, Schönhammer K 1997 Phys. Rev. B 56 7232

    [17]

    Bockrath M, Cobden D H, Lu J, Rinzler A G, Smalley R E, Balents L, McEuen P L 1999 Nature 397 598

    [18]

    Auslaender O M, Steinberg H, Yacoby A, Tserkovnyak Y, Halperin B I, Baldwin K W, Pfeiffer L N, West K W 2005 Science 308 88

    [19]

    Claessen R, Sing M, Schwingenschlögl U, Blaha P, Dressel M, Jacobsen C S 2002 Phys. Rev. Lett. 88 096402

    [20]

    Schäfer J, Sing M, Claessen R, Rotenberg E, Zhou X J, Thorne R E, Kevan S D 2003 Phys. Rev. Lett. 91 066401

    [21]

    Shaw M J, Corbin E A, Kitchin M R, Jaros M 2001 Microelectron J. 32 593

    [22]

    Brown G J, Szmulowicz F, Haugan H, Mahalingam K, Houston S 2005 Microelectron. J. 36 256

    [23]

    Rogalski A, Martyniuk P 2006 Infrared Phys. Technol. 48 39

    [24]

    Tavazza F, Levine L E, Chaka A M 2009 J. Appl. Phys. 106 043522

    [25]

    Mozos J L, Wan C C, Taraschi G, Wang J, Guo H 1997 Phys. Rev. B 56 R4351

    [26]

    Kresse G, Furthm黮ler J 1996 Phys. Rev. B 54 11169

    [27]

    Clarke L J, Štich I, Payne M C 1992 Comp. Phys. Comm. 72 14

    [28]

    Wu Z G, Cohen R E 2006 Phys. Rev. B 73 235116

    [29]

    Aryasetiawan F, Gunnarsson O 1998 Rep. Prog. Phys. 61 237

    [30]

    Eiguren A, Ambrosch-Draxl C, Echenique P M 2009 Phys. Rev. B 79 245103

    [31]

    Spataru C D, Ismail-Beigi S, Benedict L X, Louie S G 2004 Phys. Rev. Lett. 92 077402

    [32]

    Ullrich C A, Vignale G 2002 Phys. Rev. B 65 245102

    [33]

    Levine Z H, Allan D C 1989 Phys. Rev. Lett. 63 1719

    [34]

    Delley B 2002 Phys. Rev. B 66 155125

    [35]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [36]

    Baker J, Kessi A, Delley B 1996 J. Chem. Phys. 105 192

    [37]

    De Gironcoli S 1995 Phys. Rev. B 51 6773

    [38]

    Hartwigsen C, Goedecker S, Hutter J 1998 Phys. Rev. B 58 3641

    [39]

    Brandbyge M, Mozos J L, Ordej髇 P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [40]

    http//www.quantumwise.com/, Virtual NanoLab Tutorial, Version 2008.10, p54

    [41]

    Fröhlich H 1954 Proc. R. Soc. London Ser. A 223 296

    [42]

    Batra I P1990 Phys. Rev. B 42 9162

    [43]

    Sanchez-Portal D, Artacho E, Soler J M, Rubio A, Ordejon P 1999 Phys. Rev. B 59 12678

    [44]

    Abdurahman A, Shukla A, Dolg M 2002 Phys. Rev. B 65 115106

    [45]

    Lang N D, Avouris P H 2000 Phys. Rev. Lett. 84 358

  • [1] Xu Xian-Da, Zhao Lei, Sun Wei-Feng. First-principles on the energy band mechanism for modifying conduction property of graphene nanomeshes. Acta Physica Sinica, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [2] Current Phases in Hofstadter Ladder with Staggered Hopping. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191964
    [3] Liu Ying-Guang, Bian Yong-Qing, Han Zhong-He. Heat transport behavior of bicrystal ZnO containing tilt grain boundary. Acta Physica Sinica, 2020, 69(3): 033101. doi: 10.7498/aps.69.20190627
    [4] Measurement of Magnetically Insensitive State Coherent Time in Blue Dipole Trap. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20192001
    [5] Wang Lin, Wei Lai, Wang Zheng-Xiong. Effect of out-of-plane driving flow on formation of plasmoids in current sheet system. Acta Physica Sinica, 2020, 69(5): 059401. doi: 10.7498/aps.69.20191612
    [6] Liu Xiang, Mi Wen-Bo. Structure, Magnetic and Transport Properties of Fe3O4 near Verwey Transition. Acta Physica Sinica, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [7] Huang Yong-Feng, Cao Huai-Xin, Wang Wen-Hua. Conjugate linear symmetry and its application to \begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-symmetry quantum theory. Acta Physica Sinica, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
    [8] Zhao Jian-Ning, Liu Dong-Huan, Wei Dong, Shang Xin-Chun. Thermal rectification mechanism of one-dimensional composite structure with interface thermal contact resistance. Acta Physica Sinica, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [9] Luo Duan, Hui Dan-Dan, Wen Wen-Long, Li Li-Li, Xin Li-Wei, Zhong Zi-Yuan, Ji Chao, Chen Ping, He Kai, Wang Xing, Tian Jin-Shou. Design of femtosecond electron diffractometer with adjustable gap. Acta Physica Sinica, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [10] Zhuang Zhi-Ben, Li Jun, Liu Jing-Yi, Chen Shi-Qiang. Image encryption algorithm based on new five-dimensional multi-ring multi-wing hyperchaotic system. Acta Physica Sinica, 2020, 69(4): 040502. doi: 10.7498/aps.69.20191342
    [11] Liu Hou-Tong, Mao Min-Juan. An accurate inversion method of aerosol extinction coefficient about ground-based lidar without needing calibration. Acta Physica Sinica, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
  • Citation:
Metrics
  • Abstract views:  5224
  • PDF Downloads:  798
  • Cited By: 0
Publishing process
  • Received Date:  07 September 2011
  • Accepted Date:  05 June 2012
  • Published Online:  05 June 2012

First-principles study of (InAs)1/(GaSb)1 superlattice atomic chains

  • 1. Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Heilongjiang Provincial Key Laboratory of Dielectric Engineering, School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 50502014, 50972032) and the National High Technology Research and Development Program of China (Grant No. 2009AA03Z407).

Abstract: The atomic structure, the mechanical properties, the electronic band structure, and the phonon structure of (InAs)1/(GaSb)1 superlattice atomic chain are investigated by first-principles pseudopotential plane wave method, and the quantum transport properties are also calculated by the density functional theory numerical atomic orbit pseudopotential method in combination with nonequilibrium Green's function formalism. Compared with two-dimensional layer structural (InAs)1/(GaSb)1 superlattice, the (InAs)1/(GaSb)1 superlattice atomic chains have obviously different band structures, and represent metal energy band characteristics in certain conditions. The calculated mechanical strength of (InAs)1/(GaSb)1 superlattice atomic chains indicates that such structures can sustain the strain as high as =0.19. The structural stability of (InAs)1/(GaSb)1 superlattice atomic chains is investigated by full Brillouin zone analysis for phonon structure. The electron transport calculations for (InAs)1/(GaSb)1 superlattice atomic chain segments in between Al electrodes show that the conductance exhibits nontrivial features as the chain length or strain is varied. The calculated optical absorption spectra represent precipitous cutoff absorptions in infrared regime, and the cutoff wavelength varies with chain structure. InAs/GaSb superlattice atomic chains are predicted to be applied to infrared optoelectronic nanodevices, modifying optoelectronic response wavelength range by changing the structures of superlattice atomic chains.

Reference (45)

Catalog

    /

    返回文章
    返回