Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Viscoelastic relaxation attenuation property for saturated sandstones and corresponding investigation of micro-scale mechanism

Xi Dao-Ying Xu Song-Lin Liu Yong-Gui Du Yun

Viscoelastic relaxation attenuation property for saturated sandstones and corresponding investigation of micro-scale mechanism

Xi Dao-Ying, Xu Song-Lin, Liu Yong-Gui, Du Yun
PDF
Get Citation
  • Attenuation experiments are performed by Metravib dynamic mechanical analyzer with sine wave loading style to study the viscoelastic relaxation property of pump-oil saturated and glycerol saturated Pengshan sandstone and Zigong arkoses with three kinds of porosities. Based on the thermal relaxation regularities, the activation energies and the atomic vibration frequencies of relaxation attenuation peaks for three kinds of saturated sandstones are evaluated. The results show that activation energies and atomic vibrations frequencies of sandstone samples are lower than those of interstitial atoms. The overall vibration behavior of atomic cluster with defects can be used to explain why vibration frequencies are low in samples. Besides the solid atoms, the gas and liquid atoms filled in defects contribute greatly to overall vibration of sample. Saturated sandstone, cemented by a combination of mineral crystals, is a polycrystalline, multiphase solid with internal complex structure and widespread defects, and it easily takes on thermal relaxation property under sine wave loading. Such flaws and defects as point defects, dislocation and grain boundary in samples and their interaction interaction can produce relaxation attenuation peak. To explain the relaxation mechanism by saturated liquid and internal structure of the sandstone, it is natural to relate the attenuation characteristics to its macro-meso-structure. It is notable that when taking the defects, multiple phase boundary into consideration, a new interesting phenomenon appears, there produces multi relaxation with broader peak and more widely distributed parameter. This investigation is helpful to study theoretical model and seismic data interpretation.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 40874093).
    [1]

    Winkler K W, Nur A 1982 Geophysics 47 1

    [2]

    Jones T D 1986 Geophysics 51 1939

    [3]

    Jones T, Nur A 1983 Geophys. Res. Lett. 10 140

    [4]

    Xi D Y, Liu X Y, Zhang C Y 2007 Pure. Appl. Geophys. 164 2157

    [5]

    Guyer R A, TenCate J, Johnson P 1999 Phys. Rev. Lett. 82 3280

    [6]

    Johnson P A, McCall K R 1994 Geophys. Res. Lett. 21 97

    [7]

    Xi D Y, Chen Y P, Tao Y Z, Liu Y C 2006 Chinese J. Rock Mech. Engng. 25 1086 (in Chinese) [席道瑛, 陈运平, 陶月赞, 刘亚晨 2006 岩石力学与工程学报 25 1086]

    [8]

    Xi D Y, Xu S L, Xi J, Yi L K, Du Y 2011 Chinese J. Geophys. 54 2302 (in Chinese) [席道瑛, 徐松林, 席军, 易良坤, 杜赟 2011 地球物理学报 54 2302]

    [9]

    Tutuncu A N, Podio A L, Gregory A R 1998 Geophysics 63 195

    [10]

    McCall K R, Guyer R A 1994 J. Geophys. Res. 99 23887

    [11]

    van Den Abeele K E A, Carmeliet J, Johnson P A, Zinszner B 2002 J. Geophys. Res. 107 2121

    [12]

    Carmeliet J, van Den Abeele K E A 2001 Fourth International Conference on Fracture Mechanics of Concrete and Concrete Structures Cachan, France, 28 May 2011 pp11-18

    [13]

    Carmeliet J, Koen E A, van Den Abeele K E A 2002 Geophys. Res. Lett. 29 1144

    [14]

    Xi D Y, Du Y, Yi L K, Wan X L 2009 Chinese J. Rock Mech. Engng. 28 687 (in Chinese) [席道瑛, 杜赟, 易良坤, 宛新林 2009 岩石力学与工程学报 28 687]

    [15]

    Pennington W D 1997 The Leading EDGE 16 241

    [16]

    Mavko G M, Nur A 1979 Geophysics 44 161

    [17]

    O'Connell R J 1983 Am. Inst. Phys. Conference on Physics and Chemistry of Porous Media, Schlumberger-Doll Research, Johnson D L, Sen P N (Ed.) Am. Inst. Phys: pp166-176

    [18]

    Xi D Y, Yi L K, Tian X Y 2003 Chinese J. Geophysics 46 814

    [19]

    Xi D Y, Xu S L, Du Y, Yi L K 2011 J. Appl. Geophys. 71 289

    [20]

    Du Y, Xi D Y, Xu S L 2009 Chinese J. Geophys. 52 3051 (in Chinese) [杜赟, 席道瑛, 徐松林 2009 地球物理学报 52 3051]

    [21]

    Zinszner B, Johnson P A, Rasolofosaon P N J 1997 J. Geophys. Res. 101 8105

    [22]

    Xi D Y, Liu B, Yi L K 2000 Chinese J. Geophys. 43 873

    [23]

    Xi D Y, Liu B, Tian X Y 2002 Chinese J. Geophys. 45 101

    [24]

    Vo-Thanh D 1995 Geophys. J. Int. 121 737

    [25]

    Batzle M L, Han D H, Hofmann R 2006 Geophysics 71 N1

    [26]

    Batzle M, Han D, Castagna J 1996 Soc. Expl. Geoph. Expanded Abstracts 1687

    [27]

    O'Doherty R F, Anstey N A 1971 Geophys. Prospecting 19 430

    [28]

    Huang K 1979 Solid Physics (Beijing: People's Education Press) pp66-67 (in Chinese) [黄昆 1979 固体物理学 (北京:人民教育出版社) 第66—67页]

  • [1]

    Winkler K W, Nur A 1982 Geophysics 47 1

    [2]

    Jones T D 1986 Geophysics 51 1939

    [3]

    Jones T, Nur A 1983 Geophys. Res. Lett. 10 140

    [4]

    Xi D Y, Liu X Y, Zhang C Y 2007 Pure. Appl. Geophys. 164 2157

    [5]

    Guyer R A, TenCate J, Johnson P 1999 Phys. Rev. Lett. 82 3280

    [6]

    Johnson P A, McCall K R 1994 Geophys. Res. Lett. 21 97

    [7]

    Xi D Y, Chen Y P, Tao Y Z, Liu Y C 2006 Chinese J. Rock Mech. Engng. 25 1086 (in Chinese) [席道瑛, 陈运平, 陶月赞, 刘亚晨 2006 岩石力学与工程学报 25 1086]

    [8]

    Xi D Y, Xu S L, Xi J, Yi L K, Du Y 2011 Chinese J. Geophys. 54 2302 (in Chinese) [席道瑛, 徐松林, 席军, 易良坤, 杜赟 2011 地球物理学报 54 2302]

    [9]

    Tutuncu A N, Podio A L, Gregory A R 1998 Geophysics 63 195

    [10]

    McCall K R, Guyer R A 1994 J. Geophys. Res. 99 23887

    [11]

    van Den Abeele K E A, Carmeliet J, Johnson P A, Zinszner B 2002 J. Geophys. Res. 107 2121

    [12]

    Carmeliet J, van Den Abeele K E A 2001 Fourth International Conference on Fracture Mechanics of Concrete and Concrete Structures Cachan, France, 28 May 2011 pp11-18

    [13]

    Carmeliet J, Koen E A, van Den Abeele K E A 2002 Geophys. Res. Lett. 29 1144

    [14]

    Xi D Y, Du Y, Yi L K, Wan X L 2009 Chinese J. Rock Mech. Engng. 28 687 (in Chinese) [席道瑛, 杜赟, 易良坤, 宛新林 2009 岩石力学与工程学报 28 687]

    [15]

    Pennington W D 1997 The Leading EDGE 16 241

    [16]

    Mavko G M, Nur A 1979 Geophysics 44 161

    [17]

    O'Connell R J 1983 Am. Inst. Phys. Conference on Physics and Chemistry of Porous Media, Schlumberger-Doll Research, Johnson D L, Sen P N (Ed.) Am. Inst. Phys: pp166-176

    [18]

    Xi D Y, Yi L K, Tian X Y 2003 Chinese J. Geophysics 46 814

    [19]

    Xi D Y, Xu S L, Du Y, Yi L K 2011 J. Appl. Geophys. 71 289

    [20]

    Du Y, Xi D Y, Xu S L 2009 Chinese J. Geophys. 52 3051 (in Chinese) [杜赟, 席道瑛, 徐松林 2009 地球物理学报 52 3051]

    [21]

    Zinszner B, Johnson P A, Rasolofosaon P N J 1997 J. Geophys. Res. 101 8105

    [22]

    Xi D Y, Liu B, Yi L K 2000 Chinese J. Geophys. 43 873

    [23]

    Xi D Y, Liu B, Tian X Y 2002 Chinese J. Geophys. 45 101

    [24]

    Vo-Thanh D 1995 Geophys. J. Int. 121 737

    [25]

    Batzle M L, Han D H, Hofmann R 2006 Geophysics 71 N1

    [26]

    Batzle M, Han D, Castagna J 1996 Soc. Expl. Geoph. Expanded Abstracts 1687

    [27]

    O'Doherty R F, Anstey N A 1971 Geophys. Prospecting 19 430

    [28]

    Huang K 1979 Solid Physics (Beijing: People's Education Press) pp66-67 (in Chinese) [黄昆 1979 固体物理学 (北京:人民教育出版社) 第66—67页]

  • Citation:
Metrics
  • Abstract views:  1533
  • PDF Downloads:  573
  • Cited By: 0
Publishing process
  • Received Date:  06 November 2011
  • Accepted Date:  09 December 2011
  • Published Online:  20 July 2012

Viscoelastic relaxation attenuation property for saturated sandstones and corresponding investigation of micro-scale mechanism

  • 1. Mengcheng National Geophysical Observatory, School of Earth and Space Science, University of Science and Technology of China, Hefei 230026, China;
  • 2. CAS Key Laboratory for Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei 230027, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 40874093).

Abstract: Attenuation experiments are performed by Metravib dynamic mechanical analyzer with sine wave loading style to study the viscoelastic relaxation property of pump-oil saturated and glycerol saturated Pengshan sandstone and Zigong arkoses with three kinds of porosities. Based on the thermal relaxation regularities, the activation energies and the atomic vibration frequencies of relaxation attenuation peaks for three kinds of saturated sandstones are evaluated. The results show that activation energies and atomic vibrations frequencies of sandstone samples are lower than those of interstitial atoms. The overall vibration behavior of atomic cluster with defects can be used to explain why vibration frequencies are low in samples. Besides the solid atoms, the gas and liquid atoms filled in defects contribute greatly to overall vibration of sample. Saturated sandstone, cemented by a combination of mineral crystals, is a polycrystalline, multiphase solid with internal complex structure and widespread defects, and it easily takes on thermal relaxation property under sine wave loading. Such flaws and defects as point defects, dislocation and grain boundary in samples and their interaction interaction can produce relaxation attenuation peak. To explain the relaxation mechanism by saturated liquid and internal structure of the sandstone, it is natural to relate the attenuation characteristics to its macro-meso-structure. It is notable that when taking the defects, multiple phase boundary into consideration, a new interesting phenomenon appears, there produces multi relaxation with broader peak and more widely distributed parameter. This investigation is helpful to study theoretical model and seismic data interpretation.

Reference (28)

Catalog

    /

    返回文章
    返回