Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Smoothing of small on-target spots produced by frequency-tripled beams using lens array and spectral dispersion

Jiang Xiu-Juan Li Jing-Hui Li Hua-Gang Zhou Shen-Lei Li Yang Lin Zun-Qi

Smoothing of small on-target spots produced by frequency-tripled beams using lens array and spectral dispersion

Jiang Xiu-Juan, Li Jing-Hui, Li Hua-Gang, Zhou Shen-Lei, Li Yang, Lin Zun-Qi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The performances of the smoothing of small target spots with a lens array (LA) and two-dimensional smoothing by spectral dispersion (2D SSD) in frequency-tripled high-power laser driver are numerically studied. Intensity distributions and spatial power spectra of the spots are analyzed. Simulative results show that LA can reduce the near-field nonuniformity of the beam and control the envelope of on-target intensity distribution. The 2D SSD has obvious effects in eliminating high-contrast intensity modulation, even in the case that the spots are very small. The results indicate that SSD mainly smoothes the intensity modulation at low-to-middle spatial frequency for small spots, and this would lead to the modifying of the spot profile, while for large spots, SSD sweeps the fine speckle structure to reduce nonuniformity at middle-to-high frequency. These results are valuable for choosing the suitable beam smoothing method in indirect-drive experiment.
    • Funds: Project supported by the Open Fund of Key Laboratory for High Power Laser Physics of Chinese Academy of Sciences (CAS) (Grant No. SG-001103).
    [1]

    Skupsky S, Lee K 1983 J. Appl. Phys. 54 3662

    [2]

    Jiang S E, Zhang B H, Liu S Y, Yang J M, Sun K X, Huang T X, Ding Y K, Zheng Z J 2007 Scientia Sinica G 37 502 (in Chinese) [江少恩, 张保汉, 刘慎业, 杨家敏, 孙可煦, 黄天晅, 丁永坤, 郑志坚 2007 中国科学G辑 37 502]

    [3]

    Lin Y, Kessler T J, Lawrence G N 1995 Opt. Lett. 20 764

    [4]

    Liu Q, Wu R, Zhang X B, Li Y P, Tian Y C 2008 Chinese J. Lasers 35 1165 (in Chinese) [刘强, 邬融, 张晓波, 李永平, 田杨超 2008 中国激光 35 1165]

    [5]

    Lin Y, Kessler T J, Lawrence G N 1996 Opt. Lett. 21 1703

    [6]

    Tan Q F, Yan Y B, Jin G F, Wu M X 2001 Optics and Lasers in Engineering 35 165

    [7]

    Deng X, Liang X, Chen Z, Yu W, Ma R 1986 Appl. Opt. 25 377

    [8]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456

    [9]

    Skupsky S, Craxton R S 1999 Phys. Plasmas 6 2157

    [10]

    Miyaji G, Miyanaga N, Urushihara S, Suzuki K, Matsuoka S, Nakatsuka M 2002 Opt. Lett. 27 725

    [11]

    Regan S P, Marozas J A, Craxton R S, Kelly J H, Donaldson W R. Jaanimagi P A, Jacobs-Perkins D, Keck R L, Kessler T J, Meyerhofer D D, Sangster T C, Seka W, Smalyuk V A, Skupsky S, Zuegel J D 2005 J. Opt. Soc. Am. B 22 9982

    [12]

    Haynam C A, Wegner P J, Auerbach J M, Bowers M W, Dixit S N, Erbert G V, Heestand G M, Henesian M A, Hermann M R, Jancaitis K S, Manes K R, Marshall C D, Mehta N C, Menapace J, Moses E, Murray J R, Nostrand M C, Orth C D, Patterson R, Sacks R A, Shaw M J, Spaeth M, Sutton S B, Williams W H, Widmayer C C, White R K, Yang S T, VanWonterghem B M 2007 Appl. Opt. 46 3276

    [13]

    Zhou S, Zhu J, Li X, Lin Z, Dai Y 2006 Chinese J. Lasers 33 321 (in Chinese) [周申蕾, 朱俭, 李学春, 林尊琪, 戴亚平 2006 中国激光 33 321]

    [14]

    Cheng W Y, Zhang X M, Su J Q, Zhao S Z, Li P, Dong J, Zhou L D 2009 J. Opt. A: Pure Appl. Opt. 11 015709

    [15]

    Jiang X J, Zhou S L, Lin Z Q, Zhu J 2006 Acta Phys. Sin. 55 5824 (in Chinese) [江秀娟, 周申蕾, 林尊琪, 朱俭 2006 物理学报 55 5824]

    [16]

    Jiang X J, Zhou S L, Lin Z Q 2007 J. Appl. Phys. 101 023109

    [17]

    Li J H, Zhang H J, Zhou S L, Feng W, Zhu J, and Lin Z Q 2010 Acta Optica Sinica 30 827 (in Chinese) [李菁辉, 张琥杰, 周申蕾, 冯伟, 朱俭, 林尊琪 2010 光学学报 30 827]

    [18]

    Zhang B, Lv B D, Xiao J 1998 Acta Phys. Sin. 47 1998 (in Chinese) [张彬, 吕百达, 肖峻 1998 物理学报 47 1998]

    [19]

    Zhang R, Su J Q, Wang J J, Liu L Q, Li P, Jing F, Zhang X M, Xu L X, Ming H 2011 Appl. Opt. 50 687

    [20]

    Lehmberg R H, Rothenberg E 2000 J. Appl. Phys. 87 1012

    [21]

    Siegman A E 1986 Lasers 1st ed. (California: University Science Books) p630

    [22]

    Goodman J W 1968 Introduction to Fourier Optics 1st ed. (San Francisco: Mcgraw-hill Book Company) p83

    [23]

    Nishi N, Jitsuno T, Nakatsuka M, Nakai S 1998 Opt. Rev. 5 285

  • [1]

    Skupsky S, Lee K 1983 J. Appl. Phys. 54 3662

    [2]

    Jiang S E, Zhang B H, Liu S Y, Yang J M, Sun K X, Huang T X, Ding Y K, Zheng Z J 2007 Scientia Sinica G 37 502 (in Chinese) [江少恩, 张保汉, 刘慎业, 杨家敏, 孙可煦, 黄天晅, 丁永坤, 郑志坚 2007 中国科学G辑 37 502]

    [3]

    Lin Y, Kessler T J, Lawrence G N 1995 Opt. Lett. 20 764

    [4]

    Liu Q, Wu R, Zhang X B, Li Y P, Tian Y C 2008 Chinese J. Lasers 35 1165 (in Chinese) [刘强, 邬融, 张晓波, 李永平, 田杨超 2008 中国激光 35 1165]

    [5]

    Lin Y, Kessler T J, Lawrence G N 1996 Opt. Lett. 21 1703

    [6]

    Tan Q F, Yan Y B, Jin G F, Wu M X 2001 Optics and Lasers in Engineering 35 165

    [7]

    Deng X, Liang X, Chen Z, Yu W, Ma R 1986 Appl. Opt. 25 377

    [8]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456

    [9]

    Skupsky S, Craxton R S 1999 Phys. Plasmas 6 2157

    [10]

    Miyaji G, Miyanaga N, Urushihara S, Suzuki K, Matsuoka S, Nakatsuka M 2002 Opt. Lett. 27 725

    [11]

    Regan S P, Marozas J A, Craxton R S, Kelly J H, Donaldson W R. Jaanimagi P A, Jacobs-Perkins D, Keck R L, Kessler T J, Meyerhofer D D, Sangster T C, Seka W, Smalyuk V A, Skupsky S, Zuegel J D 2005 J. Opt. Soc. Am. B 22 9982

    [12]

    Haynam C A, Wegner P J, Auerbach J M, Bowers M W, Dixit S N, Erbert G V, Heestand G M, Henesian M A, Hermann M R, Jancaitis K S, Manes K R, Marshall C D, Mehta N C, Menapace J, Moses E, Murray J R, Nostrand M C, Orth C D, Patterson R, Sacks R A, Shaw M J, Spaeth M, Sutton S B, Williams W H, Widmayer C C, White R K, Yang S T, VanWonterghem B M 2007 Appl. Opt. 46 3276

    [13]

    Zhou S, Zhu J, Li X, Lin Z, Dai Y 2006 Chinese J. Lasers 33 321 (in Chinese) [周申蕾, 朱俭, 李学春, 林尊琪, 戴亚平 2006 中国激光 33 321]

    [14]

    Cheng W Y, Zhang X M, Su J Q, Zhao S Z, Li P, Dong J, Zhou L D 2009 J. Opt. A: Pure Appl. Opt. 11 015709

    [15]

    Jiang X J, Zhou S L, Lin Z Q, Zhu J 2006 Acta Phys. Sin. 55 5824 (in Chinese) [江秀娟, 周申蕾, 林尊琪, 朱俭 2006 物理学报 55 5824]

    [16]

    Jiang X J, Zhou S L, Lin Z Q 2007 J. Appl. Phys. 101 023109

    [17]

    Li J H, Zhang H J, Zhou S L, Feng W, Zhu J, and Lin Z Q 2010 Acta Optica Sinica 30 827 (in Chinese) [李菁辉, 张琥杰, 周申蕾, 冯伟, 朱俭, 林尊琪 2010 光学学报 30 827]

    [18]

    Zhang B, Lv B D, Xiao J 1998 Acta Phys. Sin. 47 1998 (in Chinese) [张彬, 吕百达, 肖峻 1998 物理学报 47 1998]

    [19]

    Zhang R, Su J Q, Wang J J, Liu L Q, Li P, Jing F, Zhang X M, Xu L X, Ming H 2011 Appl. Opt. 50 687

    [20]

    Lehmberg R H, Rothenberg E 2000 J. Appl. Phys. 87 1012

    [21]

    Siegman A E 1986 Lasers 1st ed. (California: University Science Books) p630

    [22]

    Goodman J W 1968 Introduction to Fourier Optics 1st ed. (San Francisco: Mcgraw-hill Book Company) p83

    [23]

    Nishi N, Jitsuno T, Nakatsuka M, Nakai S 1998 Opt. Rev. 5 285

  • [1] Jiang Xiu-Juan, Li Jing-Hui, Zhu Jian, Lin Zun-Qi. Study on a zooming optical system based on simple lens array used for laser uniform irradiation. Acta Physica Sinica, 2015, 64(5): 054201. doi: 10.7498/aps.64.054201
    [2] Zhu Jian, Jiang Xiu-Juan, Zhou Shen-Lei, Lin Zun-Qi. Improving of the irradiation uniformity on targets with a diffraction-weakened lens array and spectral dispersion smoothing. Acta Physica Sinica, 2006, 55(11): 5824-5828. doi: 10.7498/aps.55.5824
    [3] Zheng Jian-Zhou, Yu Qing-Xu, Guan Shou-Hua, Dong Bin, Cao Xiao-Jun, Lu Yong-Jun, Wu Yun-Feng. Two-dimensional performance of uniform irradiation with the use of a concentricity deviation lens array and partially coherent light. Acta Physica Sinica, 2012, 61(15): 154205. doi: 10.7498/aps.61.154205
    [4] Zhang Rui, Li Ping, Su Jing-Qin, Wang Jian-Jun, Li Hai, Geng Yuan-Chao, Liang Yue, Zhao Run-Chang, Dong Jun, Lu Zong-Gui, Zhou Li-Dan, Liu Lan-Qin, Lin Hong-Huan, Xu Dang-Peng, Deng Ying, Zhu Na, Jing Feng, Sui Zhan, Zhang Xiao-Min. Experimental research of target uniform illumination using smoothing by spectral dispersion and continuous phase plate. Acta Physica Sinica, 2012, 61(5): 054204. doi: 10.7498/aps.61.054204
    [5] Gao Yan-Qi, Zhao Xiao-Hui, Jia Guo, Li Fu-Jian, Cui Yong, Rao Da-Xing, Ji Lai-Lin, Liu Dong, Feng Wei, Huang Xiu-Guang, Ma Wei-Xin, Sui Zhan. Low-coherece laser based lens array beam smoothing techique. Acta Physica Sinica, 2019, 68(7): 075201. doi: 10.7498/aps.68.20182138
    [6] Li Ping, Su Jing-Qin, Ma Chi, Zhang Rui, Jing Feng. Effect of smoothing by spectral dispersion on the spatial spectrum of focal spot. Acta Physica Sinica, 2009, 58(9): 6210-6215. doi: 10.7498/aps.58.6210
    [7] Liu Lan-Qin, Zhang Ying, Geng Yuan-Chao, Wang Wen-Yi, Zhu Qi-Hua, Jing Feng, Wei Xiao-Feng, Huang Wan-Qing. Propagation characteristics of small-bandwidth pulsed beams with smoothing by spectral dispersion in high power laser system. Acta Physica Sinica, 2014, 63(16): 164201. doi: 10.7498/aps.63.164201
    [8] Jiang Xiu-Juan, Tang Yi-Fan, Wang Li, Li Jing-Hui, Wang Bo, Xiang Ying. Performance of smoothing by spectral dispersion with consideration of the gain characteristic of Nd:glass amplifier. Acta Physica Sinica, 2017, 66(12): 124204. doi: 10.7498/aps.66.124204
    [9] Zhao Sheng-Zhi, Zhang Xiao-Min, Su Jing-Qin, Dong Jun, Li Ping, Zhou Li-Dan, Cheng Wen-Yong. Suppression of small-scale self focusing of high power laser using moving beam. Acta Physica Sinica, 2009, 58(10): 7012-7016. doi: 10.7498/aps.58.7012
    [10] Li Fu-Jian, Gao Yan-Qi, Zhao Xiao-Hui, Ji Lai-Lin, Wang Wei, Huang Xiu-Guang, Ma Wei-Xin, Sui Zhan, Pei Wen-Bing. Near-field character and improvement technology of induced spatial incoherence. Acta Physica Sinica, 2018, 67(17): 175201. doi: 10.7498/aps.67.20180533
    [11] Deng Xue-Wei, Zhou Wei, Yuan Qiang, Dai Wan-Jun, Hu Dong-Xia, Zhu Qi-Hua, Jing Feng. Capsule illumination uniformity illuminated by direct laser-driven irradiation from several tens of directions. Acta Physica Sinica, 2015, 64(19): 195203. doi: 10.7498/aps.64.195203
    [12] Yan Xiong-Wei, Wang Zhen-Guo, Jiang Xin-Ying, Zheng Jian-Gang, Li Min, Jing Yu-Feng. Analysis of laser diode array pump coupling system based on microlens array. Acta Physica Sinica, 2018, 67(18): 184201. doi: 10.7498/aps.67.20172473
    [13] Wang Jian, Hou Peng-Cheng, Zhang Bin. A new scheme of spectral dispersion smoothing based on hybrid grating. Acta Physica Sinica, 2016, 65(20): 204201. doi: 10.7498/aps.65.204201
    [14] Wen Sheng-Lin, Yao Xin, Gao Fu-Hua, Zhang Yi-Xiao, Guo Yong-Kang, Lin Xiang-Di. Study on the frontal condition for continuous phase plate in inertial confinement fusion driver. Acta Physica Sinica, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [15] Yao Xin, Gao Fu-Hua, Gao Bo, Zhang Yi-Xiao, Huang Li-Xin, Guo Yong-Kang, Lin Xiang-Di. Optimization of frequency conversion system in inertial confinement fusion driver for frontally located beam smoothing elements. Acta Physica Sinica, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [16] Li Hong-Xun, Zhang Rui, Zhu Na, Tian Xiao-Cheng, Xu Dang-Peng, Zhou Dan-Dan, Zong Zhao-Yu, Fan Meng-Qiu, Xie Liang-Hua, Zheng Tian-Ran, Li Zhao-Li. Uniform irradiation of a direct drive target by optimizing the beam parameters. Acta Physica Sinica, 2017, 66(10): 105202. doi: 10.7498/aps.66.105202
    [17] Yu Bo, Ding Yong-Kun, Jiang Wei, Huang Tian-Xuan, Chen Bo-Lun, Pu Yu-Dong, Yan Ji, Chen Zhong-Jing, Zhang Xing, Yang Jia-Min, Jiang Shao-En, Zheng Jian. Laser irradiation uniformity for polar direct drive on ShenGuang III facility. Acta Physica Sinica, 2017, 66(14): 145202. doi: 10.7498/aps.66.145202
    [18] Zhang Rui, Wang Jian-Jun, Su Jing-Qin, Liu Lan-Qin, Ding Lei, Tang Jun, Liu Hua, Jing Feng, Zhang Xiao-Min. Experimental research on smoothing by spectral dispersion based on wave-guide phase modulator. Acta Physica Sinica, 2010, 59(9): 6290-6298. doi: 10.7498/aps.59.6290
    [19] Zou Wen-Kang, Chen Lin, Zhou Liang-Ji, Wang Meng, Yang Li-Bing, Xie Wei-Ping, Deng Jian-Jun. Coupling characteristics research on Z-pinch driver and wire array load. Acta Physica Sinica, 2011, 60(11): 115204. doi: 10.7498/aps.60.115204
    [20] Zhong Zhe-Qiang, Zhou Bing-Jie, Ye Rong, Zhang Bin. A novel scheme of beam smoothing using multi-central frequency and multi-color smoothing by spectral dispersion. Acta Physica Sinica, 2014, 63(3): 035201. doi: 10.7498/aps.63.035201
  • Citation:
Metrics
  • Abstract views:  1984
  • PDF Downloads:  554
  • Cited By: 0
Publishing process
  • Received Date:  22 August 2011
  • Accepted Date:  14 September 2011
  • Published Online:  05 June 2012

Smoothing of small on-target spots produced by frequency-tripled beams using lens array and spectral dispersion

  • 1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China;
  • 2. Key Laboratory for High Power laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800, China;
  • 3. Department of Physics, Guangdong Institute of Education, Guangzhou 510303, China
Fund Project:  Project supported by the Open Fund of Key Laboratory for High Power Laser Physics of Chinese Academy of Sciences (CAS) (Grant No. SG-001103).

Abstract: The performances of the smoothing of small target spots with a lens array (LA) and two-dimensional smoothing by spectral dispersion (2D SSD) in frequency-tripled high-power laser driver are numerically studied. Intensity distributions and spatial power spectra of the spots are analyzed. Simulative results show that LA can reduce the near-field nonuniformity of the beam and control the envelope of on-target intensity distribution. The 2D SSD has obvious effects in eliminating high-contrast intensity modulation, even in the case that the spots are very small. The results indicate that SSD mainly smoothes the intensity modulation at low-to-middle spatial frequency for small spots, and this would lead to the modifying of the spot profile, while for large spots, SSD sweeps the fine speckle structure to reduce nonuniformity at middle-to-high frequency. These results are valuable for choosing the suitable beam smoothing method in indirect-drive experiment.

Reference (23)

Catalog

    /

    返回文章
    返回