搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

神光III主机极向驱动靶丸表面辐照均匀性

余波 丁永坤 蒋炜 黄天晅 陈伯伦 蒲昱东 晏骥 陈忠靖 张兴 杨家敏 江少恩 郑坚

神光III主机极向驱动靶丸表面辐照均匀性

余波, 丁永坤, 蒋炜, 黄天晅, 陈伯伦, 蒲昱东, 晏骥, 陈忠靖, 张兴, 杨家敏, 江少恩, 郑坚
PDF
导出引用
导出核心图
  • 极向驱动是在间接驱动构型的激光装置中,通过重瞄各束激光的位置,实现较均匀的靶丸表面激光辐照,以研究直接驱动惯性约束聚变的关键物理问题.介绍了神光III主机装置的激光排布和焦斑特点,以及激光束重瞄方法和靶丸表面激光辐照均匀性优化原则.给出了三阶和五阶超高斯近似下的激光焦斑强度分布,540 m靶丸在能量沉积满足cos2和cos 假设时靶丸表面最均匀辐照的移束参数,以及二维辐射流体程序模拟最优移束时的内爆对称性结果.二维模拟结果表明,按cos假设移束的热斑更对称.分析了激光的束间功率不平衡、激光束重瞄精度和靶丸定位精度对靶丸表面辐照均匀性的影响.模拟结果表明,为了不显著降低靶丸表面辐照均匀性,需要将束间功率不平衡控制在5%以内,激光束重瞄精度和靶丸定位精度控制在7 m以内.
      通信作者: 余波, yubobnu@163.com
    [1]

    Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 129

    [2]

    Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford: Clarendon Press) p32

    [3]

    Lindl J D 1995 Phys. Plasmas 2 3933

    [4]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [5]

    Bodner S E, Colombant D G, Gardner J H, Lehmberg R H, Obenschain S P, Phillips L, Schmitt A J, Sethian J D, McCrory R L, Seka W, Verdon C P, Knauer J P, Afeyan B B, Powell H T 1998 Phys. Plasmas 5 1901

    [6]

    Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D 2015 Phys. Plasmas 22 110501

    [7]

    Lindl J, Landen O, Edwards J, Moses E D, NIC Team 2014 Phys. Plasmas 21 020501

    [8]

    Skupsky S, Marozas J A, Craxton R S, Betti R, Collins T J B, Delettrez J A, Goncharov V N, McKenty P W, Radha P B, Boehly T R, Knauer J P, Marshall F J, Harding D R, Kilkenny J D, Meyerhofer D D, Sangster T C, McCrory R L 2004 Phys. Plasmas 11 2763

    [9]

    Cok A M, Craxton R S, McKenty P W 2008 Phys. Plasmas 15 082705

    [10]

    Collins T J B, Marozas J A, Anderson K S, Betti R, Craxton R S, Delettrez J A, Goncharov V N, Harding D R, Marshall F J, McCrory R L, Meyerhofer D D, McKenty P W, Radha P B, Shvydky A, Skupsky S, Zuegel J D 2012 Phys. Plasmas 19 056308

    [11]

    Craxton R S, Marshall F J, Bonino M J, Epstein R, McKenty P W, Skupsky S, Delettrez J A, Igumenshchev I V, Jacobs-Perkins D W, Knauer J P, Marozas J A, Radha P B, Seka W 2005 Phys. Plasmas 12 056304

    [12]

    Radha P B, Marozas J A, Marshall F J, Shvydky A, Collins T J B, Goncharov V N, McCrory R L, McKenty P W, Meyerhofer D D, Sangster T C, Skupsky S 2012 Phys. Plasmas 19 082704

    [13]

    Krasheninnikova N S, Cobble J A, Murphy T J, Tregillis I L, Bradley P A, Hakel P, Hsu S C, Kyrala G A, Obrey K A, Schmitt M J, Baumgaertel J A, Batha S H 2014 Phys. Plasmas 21 042703

    [14]

    Radha P B, Marshall F J, Marozas J A, Shvydky A, Gabalski I, Boehly T R, Collins T J B, Craxton R S, Edgell D H, Epstein R, Frenje R A, Froula D H, Goncharov V N, Hohenberger M, McCrory R L, McKenty P W, Meyerhofer D D, Petrasso R D, Sangster T C, Skupsky S 2013 Phys. Plasmas 20 056306

    [15]

    Moses E I 2008 Fusion Sci. Technol. 54 361

    [16]

    Schmitt M J, Bradley P A, Cobble J A, Fincke J R, Hakel P, Hsu S C, Krasheninnikova N S, Kyrala G A, Magelssen G R, Montgomery D S, Murphy T J, Obrey K A, Shah R C, Tregillis I L, Baumgaertel J A, Wysocki F J, Batha S H, Craxton R S, McKenty P W, Fitzsimmons P, Nikroo A, Wallace R 2013 Phys. Plasmas 20 056310

    [17]

    Hohenberger M, Radha P B, Myatt J F, LePape S, Marozas J A, Marshall F J, Michel D T, Regan S P, Seka W, Shvydky A, Sangster T C, Bates J W, Betti R, Boehly T R, Bonino M J, Casey D T, Collins T J B, Craxton R S, Delettrez J A, Edgell D H, Epstein R, Fiksel G, Fitzsimmons P, Frenje J A, Froula D H, Goncharov V N, Harding D R, Kalantar D H, Karasik M, Kessler T J, Kilkenny J D, KnauerJ P, Kurz C, Lafon M, LaFortune K N, MacGowan B J, Mackinnon A J, MacPhee A G, McCrory R L, McKenty P W, Meeker J F, Meyerhofer D D, Nagel S R, Nikroo A, Obenschain S, Petrasso R D, Ralph J E, Rinderknecht H G, Rosenberg M J, Schmitt A J, Wallace R J, Weaver J, Widmayer W, Skupsky S, Solodov A A, Stoeckl C, Yaakobi B, Zuegel J D 2015 Phys. Plasmas 22 056308

    [18]

    Murphy T J, Krasheninnikova N S, Kyrala G A, Bradley P A, Baumgaertel J A, Cobble J A, Hakel P, Hsu S C, Kline J L, Montgomery D S, Obrey K A D, Shah R C, Tregillis I L, Schmitt M J, Kanzleiter R J, Batha S H, Wallace R J, Bhandarkar S D, Fitzsimmons P, Hoppe M L, Nikroo A, Hohenberger M, McKenty P W, Rinderknecht H G, Rosenberg M J, Petrasso R D 2015 Phys. Plasmas 22 092707

    [19]

    Weilacher F, Radha P B, Collins T J B, Marozas J A 2015 Phys. Plasmas 22 032701

    [20]

    Temporal M, Canaud B, Garbett W J, Ramis R 2014 Phys. Plasmas 21 012710

    [21]

    Ramis R, Temporal M, Canaud B, Brandon V 2014 Phys. Plasmas 21 082710

    [22]

    Deng X W, Zhou W, Yuan Q, Dai W J, Hu D X, Zhu Q H, Jing F 2015 Acta Phys. Sin. 64 195203 (in Chinese) [邓学伟,周维,袁强,代万俊,胡东霞,朱启华,景峰 2015 物理学报 64 195203]

    [23]

    Deng X W, Zhu Q H, Zheng W G, Wei X F, Jing F, Hu D X, Zhou W, Feng B, Wang J J, Peng Z T, Liu L Q, Chen Y B, Ding L, Lin D H, Guo L F, Dang Z 2014 Proc. of SPIE 9266 926607

    [24]

    Schmitt A J 1984 Appl. Phys. Lett. 44 399

    [25]

    Yang C L, Zhang R Z, Xu Q, Ma P 2008 Appl. Opt. 47 1465

    [26]

    Basko M 1996 Phys. Plasmas 3 4148

    [27]

    Froula D H, Igumenshchev I V, Michel D T, Edgell D H, Follett R, Glebov V Y, Goncharov V N, Kwiatkowski J, Marshall F J, Radha P B, Seka W, Sorce C, Stagnitto S, Stoeckl C, Sangster T C 2012 Phys. Rev. Lett. 108 125003

    [28]

    Ramis R, Meyer-ter-Vehn J, Ramireza J 2009 Comput. Phys. Commun. 180 977

  • [1]

    Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 129

    [2]

    Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford: Clarendon Press) p32

    [3]

    Lindl J D 1995 Phys. Plasmas 2 3933

    [4]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [5]

    Bodner S E, Colombant D G, Gardner J H, Lehmberg R H, Obenschain S P, Phillips L, Schmitt A J, Sethian J D, McCrory R L, Seka W, Verdon C P, Knauer J P, Afeyan B B, Powell H T 1998 Phys. Plasmas 5 1901

    [6]

    Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D 2015 Phys. Plasmas 22 110501

    [7]

    Lindl J, Landen O, Edwards J, Moses E D, NIC Team 2014 Phys. Plasmas 21 020501

    [8]

    Skupsky S, Marozas J A, Craxton R S, Betti R, Collins T J B, Delettrez J A, Goncharov V N, McKenty P W, Radha P B, Boehly T R, Knauer J P, Marshall F J, Harding D R, Kilkenny J D, Meyerhofer D D, Sangster T C, McCrory R L 2004 Phys. Plasmas 11 2763

    [9]

    Cok A M, Craxton R S, McKenty P W 2008 Phys. Plasmas 15 082705

    [10]

    Collins T J B, Marozas J A, Anderson K S, Betti R, Craxton R S, Delettrez J A, Goncharov V N, Harding D R, Marshall F J, McCrory R L, Meyerhofer D D, McKenty P W, Radha P B, Shvydky A, Skupsky S, Zuegel J D 2012 Phys. Plasmas 19 056308

    [11]

    Craxton R S, Marshall F J, Bonino M J, Epstein R, McKenty P W, Skupsky S, Delettrez J A, Igumenshchev I V, Jacobs-Perkins D W, Knauer J P, Marozas J A, Radha P B, Seka W 2005 Phys. Plasmas 12 056304

    [12]

    Radha P B, Marozas J A, Marshall F J, Shvydky A, Collins T J B, Goncharov V N, McCrory R L, McKenty P W, Meyerhofer D D, Sangster T C, Skupsky S 2012 Phys. Plasmas 19 082704

    [13]

    Krasheninnikova N S, Cobble J A, Murphy T J, Tregillis I L, Bradley P A, Hakel P, Hsu S C, Kyrala G A, Obrey K A, Schmitt M J, Baumgaertel J A, Batha S H 2014 Phys. Plasmas 21 042703

    [14]

    Radha P B, Marshall F J, Marozas J A, Shvydky A, Gabalski I, Boehly T R, Collins T J B, Craxton R S, Edgell D H, Epstein R, Frenje R A, Froula D H, Goncharov V N, Hohenberger M, McCrory R L, McKenty P W, Meyerhofer D D, Petrasso R D, Sangster T C, Skupsky S 2013 Phys. Plasmas 20 056306

    [15]

    Moses E I 2008 Fusion Sci. Technol. 54 361

    [16]

    Schmitt M J, Bradley P A, Cobble J A, Fincke J R, Hakel P, Hsu S C, Krasheninnikova N S, Kyrala G A, Magelssen G R, Montgomery D S, Murphy T J, Obrey K A, Shah R C, Tregillis I L, Baumgaertel J A, Wysocki F J, Batha S H, Craxton R S, McKenty P W, Fitzsimmons P, Nikroo A, Wallace R 2013 Phys. Plasmas 20 056310

    [17]

    Hohenberger M, Radha P B, Myatt J F, LePape S, Marozas J A, Marshall F J, Michel D T, Regan S P, Seka W, Shvydky A, Sangster T C, Bates J W, Betti R, Boehly T R, Bonino M J, Casey D T, Collins T J B, Craxton R S, Delettrez J A, Edgell D H, Epstein R, Fiksel G, Fitzsimmons P, Frenje J A, Froula D H, Goncharov V N, Harding D R, Kalantar D H, Karasik M, Kessler T J, Kilkenny J D, KnauerJ P, Kurz C, Lafon M, LaFortune K N, MacGowan B J, Mackinnon A J, MacPhee A G, McCrory R L, McKenty P W, Meeker J F, Meyerhofer D D, Nagel S R, Nikroo A, Obenschain S, Petrasso R D, Ralph J E, Rinderknecht H G, Rosenberg M J, Schmitt A J, Wallace R J, Weaver J, Widmayer W, Skupsky S, Solodov A A, Stoeckl C, Yaakobi B, Zuegel J D 2015 Phys. Plasmas 22 056308

    [18]

    Murphy T J, Krasheninnikova N S, Kyrala G A, Bradley P A, Baumgaertel J A, Cobble J A, Hakel P, Hsu S C, Kline J L, Montgomery D S, Obrey K A D, Shah R C, Tregillis I L, Schmitt M J, Kanzleiter R J, Batha S H, Wallace R J, Bhandarkar S D, Fitzsimmons P, Hoppe M L, Nikroo A, Hohenberger M, McKenty P W, Rinderknecht H G, Rosenberg M J, Petrasso R D 2015 Phys. Plasmas 22 092707

    [19]

    Weilacher F, Radha P B, Collins T J B, Marozas J A 2015 Phys. Plasmas 22 032701

    [20]

    Temporal M, Canaud B, Garbett W J, Ramis R 2014 Phys. Plasmas 21 012710

    [21]

    Ramis R, Temporal M, Canaud B, Brandon V 2014 Phys. Plasmas 21 082710

    [22]

    Deng X W, Zhou W, Yuan Q, Dai W J, Hu D X, Zhu Q H, Jing F 2015 Acta Phys. Sin. 64 195203 (in Chinese) [邓学伟,周维,袁强,代万俊,胡东霞,朱启华,景峰 2015 物理学报 64 195203]

    [23]

    Deng X W, Zhu Q H, Zheng W G, Wei X F, Jing F, Hu D X, Zhou W, Feng B, Wang J J, Peng Z T, Liu L Q, Chen Y B, Ding L, Lin D H, Guo L F, Dang Z 2014 Proc. of SPIE 9266 926607

    [24]

    Schmitt A J 1984 Appl. Phys. Lett. 44 399

    [25]

    Yang C L, Zhang R Z, Xu Q, Ma P 2008 Appl. Opt. 47 1465

    [26]

    Basko M 1996 Phys. Plasmas 3 4148

    [27]

    Froula D H, Igumenshchev I V, Michel D T, Edgell D H, Follett R, Glebov V Y, Goncharov V N, Kwiatkowski J, Marshall F J, Radha P B, Seka W, Sorce C, Stagnitto S, Stoeckl C, Sangster T C 2012 Phys. Rev. Lett. 108 125003

    [28]

    Ramis R, Meyer-ter-Vehn J, Ramireza J 2009 Comput. Phys. Commun. 180 977

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1045
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-26
  • 修回日期:  2017-05-02
  • 刊出日期:  2017-07-05

神光III主机极向驱动靶丸表面辐照均匀性

  • 1. 中国科学技术大学近代物理系, 合肥 230026;
  • 2. 中国工程物理研究院激光聚变研究中心, 绵阳 621900;
  • 3. 北京应用物理与计算数学研究所, 北京 100088
  • 通信作者: 余波, yubobnu@163.com

摘要: 极向驱动是在间接驱动构型的激光装置中,通过重瞄各束激光的位置,实现较均匀的靶丸表面激光辐照,以研究直接驱动惯性约束聚变的关键物理问题.介绍了神光III主机装置的激光排布和焦斑特点,以及激光束重瞄方法和靶丸表面激光辐照均匀性优化原则.给出了三阶和五阶超高斯近似下的激光焦斑强度分布,540 m靶丸在能量沉积满足cos2和cos 假设时靶丸表面最均匀辐照的移束参数,以及二维辐射流体程序模拟最优移束时的内爆对称性结果.二维模拟结果表明,按cos假设移束的热斑更对称.分析了激光的束间功率不平衡、激光束重瞄精度和靶丸定位精度对靶丸表面辐照均匀性的影响.模拟结果表明,为了不显著降低靶丸表面辐照均匀性,需要将束间功率不平衡控制在5%以内,激光束重瞄精度和靶丸定位精度控制在7 m以内.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回