Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on spectroscopic properties of B2 (X3g-, A3u) molecule

Liu Hui Xing Wei Shi De-Heng Sun Jin-Feng Zhu Zun-Lue

Study on spectroscopic properties of B2 (X3g-, A3u) molecule

Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lue
PDF
Get Citation
  • The X3g- and A3u states of B2 molecule are studied using highly accurate valence internally contracted multireference configuration interaction approach including the Davidson modification. The Dunning's correlation-consistent basis sets, aug-cc-pV6Z and aug-cc-pV5Z, are used in the study. To obtain more reliable results, the potential energy curves (PECs) of two electronic states are extrapolated to the complete basis set limit by the two-point total-energy extrapolation scheme. The effects of the core-valence correlation and relativistic correction on PEC are taken into account. Employing these PECs, the spectroscopic parameters (Te, Re, e, exe, eye, Be, e, e and e) of the X3g- and A3u states of two main isotopes (11B2, 10B11B) are determined and compared with those reported in the literature. Comparison with the experimental data demonstrates that the present results are accurate. With the PECs determined here, the whole vibrational states for 11B2 (X3g-, A3u) and 10B11B (X3g-, A3u) are determined when the rotational quantum number J equals zero (J=0) by numerically solving the radical Schrdinger equation of nuclear motion. For each vibrational state of every isotope species, the vibrational level and inertial rotation constants are obtained, which are in excellent accordance with the experimental findings.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61077073), the Program for Science and Technology Innovation Talents in Universities of Henan Province, China (Grant No. 2008HASTIT008), and the Program for Science and Technology of Henan Province, China (Grant No. 122300410303).
    [1]

    Mishima O, Tanaka J, Yamaoka S, Fukunaga O 1987 Science 238 181

    [2]

    Meinkohn D 1985 Combust. Flame 59 225

    [3]

    Douglas A K, Herzberg G 1940 Can. J. Res. A 18 165

    [4]

    Graham W R M, Weltner W 1976 J. Chem. Phys. 65 1516

    [5]

    Bredohl H, Dubois I, Nzohabonayo P 1982 J. Mol. Spectrosc. 93 281

    [6]

    Knight L B, Gregory B W, Cobranchi S T, Feller D, Davidson E R 1987 J. Am. Chem. Soc. 109 3521

    [7]

    Brazier C R, Carrick P G 1994 J. Chem. Phys. 100 7928

    [8]

    Tam S, Macler M, DeRose M E, Fajardo M E 2000 J. Chem. Phys. 113 9067

    [9]

    Bruna P J, Wright J S 1989 J. Chem. Phys. 91 1126

    [10]

    Langhoff S R, Bauschlicher C W 1991 J. Chem. Phys. 95 5882

    [11]

    Carmichael I 1989 J. Chem. Phys. 91 1072

    [12]

    Pellegatti A, Marinelli F, Roche M, Maynau D, Malrieu J P 1987 J. Physique 48 29

    [13]

    Bruna P J, Wright J S 1990 J. Phys. Chem. 94 1774

    [14]

    McLean A D, Liu B, Chandler G S 1992 J. Chem. Phys. 97 8459

    [15]

    Martin J M L, Francoisand J P, Gijbels R 1989 J. Chem. Phys. 90 6469

    [16]

    Bruna P J, Wright J S 1990 J. Phys. B 23 2197S

    [17]

    Deutsch P W, Curtiss L A, Pople J A 1990 Chem. Phys. Lett. 174 33

    [18]

    Howard I A, Ray A K 1997 Z. Phys. D 42 299

    [19]

    Bezugly V, Wielgus P, Kohout M, Wagner F R 2010 J. Comput. Chem. 31 1504

    [20]

    Müller T, Dallos M, Lischka H, Dubrovay Z, Szalay P G 2001 Theor. Chem. Acc. 105 227

    [21]

    Nguyen M T, Matus M H, Ngan V T, Grant D J, Dixon D A 2009 J. Phys. Chem. A 113 4895

    [22]

    Hachey M, Karna S P, Grien F 1992 J. Phys. B 25 1119

    [23]

    Tzeli D, Mavridis A 2005 J. Phys. Chem. A 109 10663

    [24]

    Miliordos E, Mavridis A 2010 J. Chem. Phys. 132 164307

    [25]

    Peterson K A, Kendall R S, Dunning T H 1993 J. Chem. Phys. 99 9790

    [26]

    Dupuis M, Liu B 1978 J. Chem. Phys. 68 2902

    [27]

    Xie A D, Zhu Z H 2006 Chin. J. Comput. Phys. 23 594 (in Chinese) [谢安东, 朱正和 2006 计算物理 23 594]

    [28]

    Yang C L, Zhu Z H, Wang R, Liu X Y 2001 J. Mol. Struct. (Theochem) 548 47

    [29]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [30]

    Davidson E R, Silver D W 1977 Chem. Phys. Lett. 52 403

    [31]

    Werner H-J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [32]

    Knowles P J, Werner H-J 1988 Chem. Phys. Lett. 145 514

    [33]

    Wilson A K, Mourik T V, Dunning T H 1996 J. Mol. Struct. 388 339

    [34]

    Mourik T V, Wilson A K, Dunning T H 1999 Mol. Phys. 96 529

    [35]

    Woon D E, Dunning T H 1993 J. Chem. Phys. 98 1358

    [36]

    Krogh J W, Lindh R, Malmqvist P-Å, Roos B O, Veryazov V, Widmark P-O 2009 Molcas (Version 7.4) (Sweden: Lund University)

    [37]

    Liu H, Shi D H, Sun J F, Zhu Z L 2011 60 063101 (in Chinese) [刘慧, 施德恒, 孙金峰, 朱遵略 2011 物理学报 60 063101]

    [38]

    Liu H, Xing W, Shi D H, Zhu Z L, Sun J F 2011 60 043102 (in Chinese) [刘慧, 邢伟, 施德恒, 朱遵略, 孙金峰 2011 物理学报 60 043102]

    [39]

    Gao F, Yang C L, Hu Z Y, Wang M S 2007 Chin. Phys. 16 3668

    [40]

    Shi D H, Liu H, Sun J F, Zhu Z L, Liu Y F 2011 J. Mol. Spectrosc. 269 143

    [41]

    Shi D H, Liu H, Sun J F, Zhu Z L, Liu Y F 2011 J. Quant. Spectrosc. Radiat. Transfer 112 2567

    [42]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [43]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [44]

    Kendall R A, Dunning T H, Harrison R J 1992 J. Chem. Phys. 96 6796

  • [1]

    Mishima O, Tanaka J, Yamaoka S, Fukunaga O 1987 Science 238 181

    [2]

    Meinkohn D 1985 Combust. Flame 59 225

    [3]

    Douglas A K, Herzberg G 1940 Can. J. Res. A 18 165

    [4]

    Graham W R M, Weltner W 1976 J. Chem. Phys. 65 1516

    [5]

    Bredohl H, Dubois I, Nzohabonayo P 1982 J. Mol. Spectrosc. 93 281

    [6]

    Knight L B, Gregory B W, Cobranchi S T, Feller D, Davidson E R 1987 J. Am. Chem. Soc. 109 3521

    [7]

    Brazier C R, Carrick P G 1994 J. Chem. Phys. 100 7928

    [8]

    Tam S, Macler M, DeRose M E, Fajardo M E 2000 J. Chem. Phys. 113 9067

    [9]

    Bruna P J, Wright J S 1989 J. Chem. Phys. 91 1126

    [10]

    Langhoff S R, Bauschlicher C W 1991 J. Chem. Phys. 95 5882

    [11]

    Carmichael I 1989 J. Chem. Phys. 91 1072

    [12]

    Pellegatti A, Marinelli F, Roche M, Maynau D, Malrieu J P 1987 J. Physique 48 29

    [13]

    Bruna P J, Wright J S 1990 J. Phys. Chem. 94 1774

    [14]

    McLean A D, Liu B, Chandler G S 1992 J. Chem. Phys. 97 8459

    [15]

    Martin J M L, Francoisand J P, Gijbels R 1989 J. Chem. Phys. 90 6469

    [16]

    Bruna P J, Wright J S 1990 J. Phys. B 23 2197S

    [17]

    Deutsch P W, Curtiss L A, Pople J A 1990 Chem. Phys. Lett. 174 33

    [18]

    Howard I A, Ray A K 1997 Z. Phys. D 42 299

    [19]

    Bezugly V, Wielgus P, Kohout M, Wagner F R 2010 J. Comput. Chem. 31 1504

    [20]

    Müller T, Dallos M, Lischka H, Dubrovay Z, Szalay P G 2001 Theor. Chem. Acc. 105 227

    [21]

    Nguyen M T, Matus M H, Ngan V T, Grant D J, Dixon D A 2009 J. Phys. Chem. A 113 4895

    [22]

    Hachey M, Karna S P, Grien F 1992 J. Phys. B 25 1119

    [23]

    Tzeli D, Mavridis A 2005 J. Phys. Chem. A 109 10663

    [24]

    Miliordos E, Mavridis A 2010 J. Chem. Phys. 132 164307

    [25]

    Peterson K A, Kendall R S, Dunning T H 1993 J. Chem. Phys. 99 9790

    [26]

    Dupuis M, Liu B 1978 J. Chem. Phys. 68 2902

    [27]

    Xie A D, Zhu Z H 2006 Chin. J. Comput. Phys. 23 594 (in Chinese) [谢安东, 朱正和 2006 计算物理 23 594]

    [28]

    Yang C L, Zhu Z H, Wang R, Liu X Y 2001 J. Mol. Struct. (Theochem) 548 47

    [29]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [30]

    Davidson E R, Silver D W 1977 Chem. Phys. Lett. 52 403

    [31]

    Werner H-J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [32]

    Knowles P J, Werner H-J 1988 Chem. Phys. Lett. 145 514

    [33]

    Wilson A K, Mourik T V, Dunning T H 1996 J. Mol. Struct. 388 339

    [34]

    Mourik T V, Wilson A K, Dunning T H 1999 Mol. Phys. 96 529

    [35]

    Woon D E, Dunning T H 1993 J. Chem. Phys. 98 1358

    [36]

    Krogh J W, Lindh R, Malmqvist P-Å, Roos B O, Veryazov V, Widmark P-O 2009 Molcas (Version 7.4) (Sweden: Lund University)

    [37]

    Liu H, Shi D H, Sun J F, Zhu Z L 2011 60 063101 (in Chinese) [刘慧, 施德恒, 孙金峰, 朱遵略 2011 物理学报 60 063101]

    [38]

    Liu H, Xing W, Shi D H, Zhu Z L, Sun J F 2011 60 043102 (in Chinese) [刘慧, 邢伟, 施德恒, 朱遵略, 孙金峰 2011 物理学报 60 043102]

    [39]

    Gao F, Yang C L, Hu Z Y, Wang M S 2007 Chin. Phys. 16 3668

    [40]

    Shi D H, Liu H, Sun J F, Zhu Z L, Liu Y F 2011 J. Mol. Spectrosc. 269 143

    [41]

    Shi D H, Liu H, Sun J F, Zhu Z L, Liu Y F 2011 J. Quant. Spectrosc. Radiat. Transfer 112 2567

    [42]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [43]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [44]

    Kendall R A, Dunning T H, Harrison R J 1992 J. Chem. Phys. 96 6796

  • [1] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lue. Spectroscopic properties of AlC (X4∑-, B4∑-) molecule. Acta Physica Sinica, 2013, 62(11): 113101. doi: 10.7498/aps.62.113101
    [2] Shi De-Heng, Niu Xiang-Hong, Sun Jin-Feng, Zhu Zun-Lue. Spectroscopic parameters and molecular constants of X1+ and a3 electronic states of BF radical. Acta Physica Sinica, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [3] Wang Jie-Min, Feng Heng-Qiang, Sun Jin-Feng, Shi De-Heng, Li Wen-Tao, Zhu Zun-Lüe. A study on spectroscopic parameters of X2+, A2 and B2+ low-lying electronic states of SiN radical. Acta Physica Sinica, 2013, 62(1): 013105. doi: 10.7498/aps.62.013105
    [4] Wang Jie-Min, Wang Xi-Juan, Tao Ya-Ping. Spectroscopic parameters and molecular constants of 75As32S+ and 75As34S+. Acta Physica Sinica, 2015, 64(24): 243101. doi: 10.7498/aps.64.243101
    [5] Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun. Spectroscopic parameters and molecular constants of CSe(X1Σ+) radical. Acta Physica Sinica, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [6] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. Investigations on spectroscopic parameters and molecular constants of SO+ (b4∑-) cation. Acta Physica Sinica, 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [7] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. MRCI+Q study on spectroscopic parameters and molecular constants of X1Σ+ and A1Π electronic states of the SiSe molecule. Acta Physica Sinica, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [8] Zhu Zun-Lüe, Lang Jian-Hua, Qiao Hao. Spectroscopic properties and molecular constants of the ground and excited states of SF molecule. Acta Physica Sinica, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [9] Wang Jie-Min, Sun Jin-Feng. Multireference configuration interaction study on spectroscopic parameters and molecular constants of AsN(X1 +) radical. Acta Physica Sinica, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [10] Zhu Zun-Lue, Sun Jin-Feng, Liu Hui, Xing Wei, Shi De-Heng. Study on spectroscopic parameters and molecular constants of CS+(X2Σ+) and CS+(A2Π) by MRCI. Acta Physica Sinica, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [11] Wang Jie-Min, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lue, Li Wen-Tao. Theoretical investigation on molecular constants of PH, PD and PT molecules. Acta Physica Sinica, 2012, 61(6): 063104. doi: 10.7498/aps.61.063104
    [12] Shi De-Heng, Sun Jin-Feng, Liu Yu-Fang, Zhu Zun-Lüe, Zhang Jin-Ping. Elastic collision between S and D atoms at low temperatures and accurate analytic interaction potential and molecular constants of the SD(X2Π) radical. Acta Physica Sinica, 2009, 58(11): 7646-7653. doi: 10.7498/aps.58.7646
    [13] Huang Duo-Hui, Wang Fan-Hou, Yang Jun-Sheng, Wan Ming-Jie, Cao Qi-Long, Yang Ming-Chao. Potential energy curves and spectroscopic properties of SnO (X1Σ+, a3Π and A1Π) molecule. Acta Physica Sinica, 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [14] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. Spectroscopic properties of BCl (X1Σ+, a3Π, A1Π) molecule. Acta Physica Sinica, 2014, 63(12): 123102. doi: 10.7498/aps.63.123102
    [15] Huang Duo-Hui, Wan Ming-Jie, Wang Fan-Hou, Yang Jun-Sheng, Cao Qi-Long, Wang Jin-Hua. Potential energy curves and spectroscopic properties of GeS molecules: in ground states and low-lying excited states. Acta Physica Sinica, 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [16] Liu Yu-Xiao, Zhao Zhen-Hua, Wang Yong-Qiang, Chen Yu-Hong. Variational calculations and relativistic corrections to the nonrelativistic ground energies of the helium atom and the helium-like ions. Acta Physica Sinica, 2005, 54(6): 2620-2624. doi: 10.7498/aps.54.2620
    [17] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun Lüe. Potential energy curve and spectroscopic properties of PS (X2Π) radical. Acta Physica Sinica, 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [18] Wei Hong-Yuan, Xiong Xiao-Ling, Liu Guo-Ping, Luo Shun-Zhong. Spectroscopic parameters and potential energy function of the ground state of TiO (X 3 Δr). Acta Physica Sinica, 2011, 60(6): 063401. doi: 10.7498/aps.60.063401
    [19] Li Song, Han Li-Bo, Chen Shan-Jun, Duan Chuan-Xi. Potential energy function and spectroscopic parameters of SN- molecular ion. Acta Physica Sinica, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [20] Qian Qi, Yang Chuan-Lu, Gao Feng, Zhang Xiao-Yan. Multi-reference configuration interaction study on analytical potential energy function and spectroscopic constants of XOn(X=S,Cl; n=0,±1). Acta Physica Sinica, 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
  • Citation:
Metrics
  • Abstract views:  1166
  • PDF Downloads:  402
  • Cited By: 0
Publishing process
  • Received Date:  14 March 2012
  • Accepted Date:  09 May 2012
  • Published Online:  20 October 2012

Study on spectroscopic properties of B2 (X3g-, A3u) molecule

  • 1. College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China;
  • 2. College of Physics and Information Engineering, Henan Normal University, Xinxiang 453007, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 61077073), the Program for Science and Technology Innovation Talents in Universities of Henan Province, China (Grant No. 2008HASTIT008), and the Program for Science and Technology of Henan Province, China (Grant No. 122300410303).

Abstract: The X3g- and A3u states of B2 molecule are studied using highly accurate valence internally contracted multireference configuration interaction approach including the Davidson modification. The Dunning's correlation-consistent basis sets, aug-cc-pV6Z and aug-cc-pV5Z, are used in the study. To obtain more reliable results, the potential energy curves (PECs) of two electronic states are extrapolated to the complete basis set limit by the two-point total-energy extrapolation scheme. The effects of the core-valence correlation and relativistic correction on PEC are taken into account. Employing these PECs, the spectroscopic parameters (Te, Re, e, exe, eye, Be, e, e and e) of the X3g- and A3u states of two main isotopes (11B2, 10B11B) are determined and compared with those reported in the literature. Comparison with the experimental data demonstrates that the present results are accurate. With the PECs determined here, the whole vibrational states for 11B2 (X3g-, A3u) and 10B11B (X3g-, A3u) are determined when the rotational quantum number J equals zero (J=0) by numerically solving the radical Schrdinger equation of nuclear motion. For each vibrational state of every isotope species, the vibrational level and inertial rotation constants are obtained, which are in excellent accordance with the experimental findings.

Reference (44)

Catalog

    /

    返回文章
    返回