-
采用Davidson修正的内收缩多参考组态相互作用方法(icMRCI+Q) 结合Dunning等的相关一致基计算了PS自由基X2Π 态势能曲线. 利用三阶Douglas-Kroll Hamilton近似结合cc-pV5Z相对论收缩基进行了相对论修正计算. 利用aug-cc-pCV5Z基组对势能曲线进行了核价相关修正计算, 并将总能量外推至完全基组极限. 拟合得到了X2Π态的主要光谱常数Re, ωe, ωexe, ωeye, Be, αe 和De, 与实验结果符合较好. 利用Breit-Pauli算符, 研究了旋轨耦合效应对势能曲线的影响, 得到了两条Ω 态的势能曲线. 详细分析了在旋轨耦合计算中, 核电子相关与冻结核近似对电子结构和光谱性质的影响. 在icMRCI+Q/56+DK+CV+SO理论水平上得到了两个Ω 态的主要光谱常数Te, Re, ωe, ωexe, ωeye, Be 和αe, 结果与实验结果一致. 在平衡位置处, 本文的X2Π态旋轨耦合能量分裂值为 323.73 cm-1, 与实验结果321.93 cm-1较为一致. 通过求解双原子分子核运动的径向Schrödinger方程, 找到了无转动PS自由基X2Π态及其两个Ω 态的全部振动态, 还分别计算了它们相应的振动能级和惯性转动常数等分子常数, 这些结果与已有的实验值一致.
[1] Ohishi M, Yamamoto S, Saito S, Kawaguchi K, Suzuki H, Kaifu N, Ishikawa S I, Takano S, Tsuji T, Uno W 1988 Astrophys. J. 77 135
[2] Dressler K, Miescher E 1955 Proc. Phys. Soc. A 68 542
[3] Dressler K 1955 Helv. Phys. Acta 28 563
[4] Narasimham N A, Balasubramanian T K 1971 J. Mol. Spectrosc. 37 371
[5] Jenouvrier A, Pascat B 1978 Can. J. Phys. 56 1088
[6] Lin K K, Balling L C, Wright J J 1987 Chem. Phys. Lett. 138 168
[7] Kawaguchi K, Hirota E, Ohishi M, Suzuki H, Takano S, Yamamoto S, Saito S 1988 J. Mol. Spectrosc. 130 81
[8] Kama S P, Bruna P J, Grein F 1988 J. Phys. B 21 1303
[9] Woon D E, Dunning T H 1994 J. Chem. Phys. 101 8877
[10] Moussaoui Y, Ouamerali O, De Maré G R 1998 J. Mol. Struct. (Theochem) 425 237
[11] Kalcher J 2002 Phys. Chem. Chem. Phys. 4 3311
[12] Yaghlane S B, Francisco J S, Hochlaf M 2012 J. Chem. Phys. 136 244309
[13] Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803
[14] Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514
[15] Wang J M, Feng H Q, Sun J F, Shi D H 2012 Chin. Phys. B 21 023102
[16] Zhang X N, Shi D H, Sun J F, Zhu Z L 2011 Chin. Phys. B 20 043105
[17] Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61
[18] Richartz A, Buenker R J, Peyerimhoff S D 1978 Chem. Phys. 28 305
[19] Dunning T H 1989 J. Chem. Phys. 90 1007
[20] van Mourik T, Dunning T H 2000 Int. J. Quantum Chem. 76 205
[21] De Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 114 48
[22] Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037
[23] Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215
[24] Liu H, Shi D H, Sun J F, Zhu Z L 2013 J. Quant. Spectrosc. Rad. Transfer. 121 9
-
[1] Ohishi M, Yamamoto S, Saito S, Kawaguchi K, Suzuki H, Kaifu N, Ishikawa S I, Takano S, Tsuji T, Uno W 1988 Astrophys. J. 77 135
[2] Dressler K, Miescher E 1955 Proc. Phys. Soc. A 68 542
[3] Dressler K 1955 Helv. Phys. Acta 28 563
[4] Narasimham N A, Balasubramanian T K 1971 J. Mol. Spectrosc. 37 371
[5] Jenouvrier A, Pascat B 1978 Can. J. Phys. 56 1088
[6] Lin K K, Balling L C, Wright J J 1987 Chem. Phys. Lett. 138 168
[7] Kawaguchi K, Hirota E, Ohishi M, Suzuki H, Takano S, Yamamoto S, Saito S 1988 J. Mol. Spectrosc. 130 81
[8] Kama S P, Bruna P J, Grein F 1988 J. Phys. B 21 1303
[9] Woon D E, Dunning T H 1994 J. Chem. Phys. 101 8877
[10] Moussaoui Y, Ouamerali O, De Maré G R 1998 J. Mol. Struct. (Theochem) 425 237
[11] Kalcher J 2002 Phys. Chem. Chem. Phys. 4 3311
[12] Yaghlane S B, Francisco J S, Hochlaf M 2012 J. Chem. Phys. 136 244309
[13] Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803
[14] Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514
[15] Wang J M, Feng H Q, Sun J F, Shi D H 2012 Chin. Phys. B 21 023102
[16] Zhang X N, Shi D H, Sun J F, Zhu Z L 2011 Chin. Phys. B 20 043105
[17] Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61
[18] Richartz A, Buenker R J, Peyerimhoff S D 1978 Chem. Phys. 28 305
[19] Dunning T H 1989 J. Chem. Phys. 90 1007
[20] van Mourik T, Dunning T H 2000 Int. J. Quantum Chem. 76 205
[21] De Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 114 48
[22] Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037
[23] Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215
[24] Liu H, Shi D H, Sun J F, Zhu Z L 2013 J. Quant. Spectrosc. Rad. Transfer. 121 9
引用本文: |
Citation: |
计量
- 文章访问数: 1272
- PDF下载量: 711
- 被引次数: 0