-
基于相关一致极化4zeta(aug-cc-pVQZ)基组, 应用量子化学从头计算中高水平的多参考组态相互作用方法计算了BCl+ 两个离解极限B+(1Sg)+Cl(2Pu)和B (2Pu)+Cl+ (3Pg)的14个-S态势能曲线. 在计算中考虑了Davidson修正(+Q)和标量相对论效应, 并首次在计算中考虑了BCl+ 的旋轨耦合效应, 获得了由能量最低的4个-S态分裂出的7个 态. 计算结果表明相同对称性的 态的势能曲线存在着非常明显的避免交叉. 通过分析-S态的电子结构, 得到了各态的电子跃迁特性, 并确认了电子态的多组态性质. 使用LEVEL程序通过求解径向的Schrdinger方程得到了束缚-S 和态的光谱参数De, Re, Te, e, ee和Be. 通过和已有的-S态X2+ 的实验数据进行对比发现, 本文所得的计算结果与实验结果非常一致. 而文中其他电子态的光谱参数均为首次报道.
-
关键词:
- 势能曲线 /
- 光谱参数 /
- 多参考组态相互作用方法 /
- 旋轨耦合
[1] Flamm D L 1993 Solid State Technol. 36 49
[2] Patron S J, Hobson W S, Abernathy C R, Ren F, Fullowan T R, Katz A, Perle A P 1993 Plasma Chem. Plasma Proc. 13 311
[3] Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules (New York: VanNostrand Reinhold)
[4] Maki A G, Lovas F J, Suenram R D 1982 J. Mol. Spectrosc. 91 424
[5] Bredohl H, Dubois I, Houbrechts Y, Nzohabonayo P 1984 J. Phys. B: At. Mol. Phys. 17 209
[6] Bredohl H, Dubois I, Mélen F 1987 J. Mol. Spectrosc. 121 135
[7] Verma R D 1995 J. Mol. Spectrosc. 169 295
[8] Liu Y F, Zhang X M, Yu K 2012 Computat. Theor. Chem. 991 82
[9] Hildenbrand D L 1996 J. Chem. Phys. 105 10507
[10] Bauschlicher C W, Ricca A 1999 J. Phys. Chem. A 103 4313
[11] Irikura K K, Johnson R D, Hudgens J W 2000 J. Phys. Chem. A 104 3800
[12] Wang X Y, Ding S L 2004 Acta Phys. Sin. 53 423 (in Chinese) [王晓艳, 丁世良 2004 物理学报 53 423]
[13] Han H X, Peng Q, Wen Z Y, Wang Y B 2005 Acta Phys. Sin. 54 78 (in Chinese) [韩慧仙, 彭谦, 文振翼, 王育彬 2005 物理学报 54 78]
[14] Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels. University of Waterloo Chemical Physics Research Report CP-663
[15] Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053
[16] Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259
[17] Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803
[18] Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514
[19] Yan B, Pan S F, Wang Z G, Yu J H 2005 Acta Phys. Sin. 54 5618 (in Chinese) [闫冰, 潘守甫, 王志刚, 于俊华 2005 物理学报 54 5618]
[20] Li R, Lian K Y, Li Q N, Miao F J, Yan Bing, Jin M X 2012 Chin. Phys. B 21 123102
[21] Moore C E 1971 Atomic Energy Levels (Washington, DC: National Bureau of Standards)
-
[1] Flamm D L 1993 Solid State Technol. 36 49
[2] Patron S J, Hobson W S, Abernathy C R, Ren F, Fullowan T R, Katz A, Perle A P 1993 Plasma Chem. Plasma Proc. 13 311
[3] Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules (New York: VanNostrand Reinhold)
[4] Maki A G, Lovas F J, Suenram R D 1982 J. Mol. Spectrosc. 91 424
[5] Bredohl H, Dubois I, Houbrechts Y, Nzohabonayo P 1984 J. Phys. B: At. Mol. Phys. 17 209
[6] Bredohl H, Dubois I, Mélen F 1987 J. Mol. Spectrosc. 121 135
[7] Verma R D 1995 J. Mol. Spectrosc. 169 295
[8] Liu Y F, Zhang X M, Yu K 2012 Computat. Theor. Chem. 991 82
[9] Hildenbrand D L 1996 J. Chem. Phys. 105 10507
[10] Bauschlicher C W, Ricca A 1999 J. Phys. Chem. A 103 4313
[11] Irikura K K, Johnson R D, Hudgens J W 2000 J. Phys. Chem. A 104 3800
[12] Wang X Y, Ding S L 2004 Acta Phys. Sin. 53 423 (in Chinese) [王晓艳, 丁世良 2004 物理学报 53 423]
[13] Han H X, Peng Q, Wen Z Y, Wang Y B 2005 Acta Phys. Sin. 54 78 (in Chinese) [韩慧仙, 彭谦, 文振翼, 王育彬 2005 物理学报 54 78]
[14] Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels. University of Waterloo Chemical Physics Research Report CP-663
[15] Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053
[16] Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259
[17] Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803
[18] Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514
[19] Yan B, Pan S F, Wang Z G, Yu J H 2005 Acta Phys. Sin. 54 5618 (in Chinese) [闫冰, 潘守甫, 王志刚, 于俊华 2005 物理学报 54 5618]
[20] Li R, Lian K Y, Li Q N, Miao F J, Yan Bing, Jin M X 2012 Chin. Phys. B 21 123102
[21] Moore C E 1971 Atomic Energy Levels (Washington, DC: National Bureau of Standards)
引用本文: |
Citation: |
计量
- 文章访问数: 1664
- PDF下载量: 722
- 被引次数: 0