Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A first principles study on Mn2NiGa Heusler alloy

Zhao Jian-Tao Zhao Kun Wang Jia-Jia Yu Xin-Quan Yu Jin Wu San-Xie

A first principles study on Mn2NiGa Heusler alloy

Zhao Jian-Tao, Zhao Kun, Wang Jia-Jia, Yu Xin-Quan, Yu Jin, Wu San-Xie
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Tetragonal distortion of Mn2NiGa Heusler alloy is calculated by first-principles based on density functional theory with projector augmented wave pseudopotential, and the magnetism, electronic structure, elastic constants and phonon frequencies are also calculated and analyzed. The contribution of the spin magnetic moments of Mn atom to the total moment is largest for Mn2NiGa, and the Mn2NiGa alloy shows ferrimagnetism in these two cases, owning to the antiparallel but unbalanced magnetic moments of Mn (A) atom and Mn (B) atom. Analysis of tetragonal distortion shows that there is a local minimum total energy at c/a=0.94 and c/a=1.27, which corresponds to a stable martensitic phase. Elastic constants of Mn2NiGa reveal that cubic structure does not satisfy stability conditions, but tetragonal structure (c/a=0.94 and c/a=1.27) does. The imaginary values of phonon frequencies in cubic structures validate that tetragonal structure (c/a=0.94 and c/a=1.27) of Mn2NiGa is more stable than cubic structure. The phase transition temperature of c/a=1.27 tetragonal structure converting to cubic structure is about 315 K.
    [1]

    Karaman I, Basaran B, Karaca H E, Karsilayan A I, Chamlyakov Y I 2007 Appl. Phys. Lett. 90 172505

    [2]

    Aparna C, Barman S R 2009 Appl. Phys. Lett. 94 161908

    [3]

    Chatterjee S, Giri S, Majumdar S 2008 Phys. Rev. B 77 22440

    [4]

    Luo H Z, Zhang H W, Zhu Z Y, Ma L, Xu S F, Wu G H, Zhu X X, Jiang C B, Xu H B 2008 J. Appl. Phys. 103 083908

    [5]

    Yusuke O, Mikihiko O, Yasuo A 2009 J. Appl. Phys. 105 07C920

    [6]

    Galanakis I, Mavropoulos P H, Dederichs P H 2006 J. Phys. D: Appl. Phys. 39 765

    [7]

    Ullakko K, Huang J K, Kantner C, O' Handley R C, Kokorin V V 1996 Appl. Phys. Lett. 69 1966

    [8]

    Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H, Wu G H, Zhang X X, Xiao G 2003 Appl. Phys. Lett. 82 424

    [9]

    Fujita A, Fukamichi K, Gejima E, Kainunm R, Ishida K 2001 Appl. Phys. Lett. 77 3054

    [10]

    Wuttig M, Li J, Craciuneseu C 2001 Scripta Mater. 44 2393

    [11]

    Oikawa K, Wulff L, Iijima T, Gejima F, Ohmori T, Fujita A, Fukamichi K, Kainuma R, Ishida K 2001 Appl. Phys. Lett. 79 3290

    [12]

    Sutou Y, Imano Y, Koeda N, Omori T, Kainum R, Ishida K, Oikawa K 2004 Appl. Phys. Lett. 85 4358

    [13]

    Wan J F, Wang J N 2005 Physica B 355 172

    [14]

    Jakob G, Elmers H J 2007 J. Magn. Magn. Mater. 310 12779

    [15]

    Liu G D, Dai X F, Yu S Y, Zhu Z Y, Chen J L, Wu G H 2006 Phys. Rev. B 74 054435

    [16]

    Hafner J 2008 J. Comput. Chem. 29 2044

    [17]

    Kresse G Furthmuller J 1996 Phys. Rev. B 54 11169

    [18]

    Torrent M, Jollet F, Bottin F 2008 Comput. Mater. Sci. 42 337

    [19]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [20]

    Helmholdt R B, Buschow K H J 1987 J. Less-Comm. Met. 128 167

    [21]

    Luo L J, Zhong C G, Jiang X F, Fang J H, Jiang Q 2010 Acta Phys. Sin. 59 0521 (in Chinese) [罗礼进, 仲崇贵, 江学范, 方靖淮, 蒋青 2010 物理学报 59 0521]

    [22]

    Godlevsky V V, Rabe K M 2001 Phys. Rev. B 63 134407

    [23]

    Alippi P, Marcus P M, Scheffler M 1997 Phys. Rev. Lett. 78 3892

    [24]

    Marcus P M, Alippi P 1998 Phys. Rev. B 57 1971

    [25]

    Zhao K, Zhang K, Wang J J, Yu J, Wu S X 2011 Acta Phys. Sin. 60 127101 (in Chinese) [赵昆, 张坤, 王家佳, 于金, 吴三械 2011 物理学报 60 127101]

    [26]

    Trambly L G, Nguyen M D, M L 1995 Phys. Rev. B 52 7920

    [27]

    Mehl M J, Osburn J E, Papaconstantopoulos D A, Klein B M 1990 Phys. Rev. B 41 10311

    [28]

    Rached H, Rached D, Khenata R, Reshak Ali H, Rabah M 2009 Phys. Status Solidi B 246 1580

    [29]

    Ozdemir Kart S, Uludogan M, Karaman, Cagin T 2008 Phys. Stat. Sol. A 205 1026

    [30]

    Wallace D C 1972 Thermodynamics of Crystals (New York: John Wiley & Sons) p39

    [31]

    Jona F, Marcus P M 2001 Phys. Rev. B 63 094113

    [32]

    Yuan P F, Zhu W J, Xu J A, Liu S J, Jing F Q 2010 Acta Phys. Sin. 59 8755(in Chinese) [原鹏飞, 祝文军, 徐济安, 刘绍军, 经福谦 2010 物理学报 59 8755]

    [33]

    Hao Y J, Zhang L, Chen X R 2008 Phys. Rev. B 78 134101

    [34]

    Mei Z G, Shang S L, Wang Y 2009 Phys. Rev. B 79 134102

    [35]

    Wang Y, Liu Z K, Chen L Q 2004 Acta Mater. 52 2665

    [36]

    Wang Y, Ahuja R, Johansson B 2004 Int. J. Quantum. Chem. 96 501

    [37]

    Dove M T 1993 Introduction to Lattice Dynamics (Cambridge: Cambridge University Press) p258

    [38]

    Liu G D 2007 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese) [刘国栋 2007 博士学位论文 (重庆: 重庆大学)]

  • [1]

    Karaman I, Basaran B, Karaca H E, Karsilayan A I, Chamlyakov Y I 2007 Appl. Phys. Lett. 90 172505

    [2]

    Aparna C, Barman S R 2009 Appl. Phys. Lett. 94 161908

    [3]

    Chatterjee S, Giri S, Majumdar S 2008 Phys. Rev. B 77 22440

    [4]

    Luo H Z, Zhang H W, Zhu Z Y, Ma L, Xu S F, Wu G H, Zhu X X, Jiang C B, Xu H B 2008 J. Appl. Phys. 103 083908

    [5]

    Yusuke O, Mikihiko O, Yasuo A 2009 J. Appl. Phys. 105 07C920

    [6]

    Galanakis I, Mavropoulos P H, Dederichs P H 2006 J. Phys. D: Appl. Phys. 39 765

    [7]

    Ullakko K, Huang J K, Kantner C, O' Handley R C, Kokorin V V 1996 Appl. Phys. Lett. 69 1966

    [8]

    Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H, Wu G H, Zhang X X, Xiao G 2003 Appl. Phys. Lett. 82 424

    [9]

    Fujita A, Fukamichi K, Gejima E, Kainunm R, Ishida K 2001 Appl. Phys. Lett. 77 3054

    [10]

    Wuttig M, Li J, Craciuneseu C 2001 Scripta Mater. 44 2393

    [11]

    Oikawa K, Wulff L, Iijima T, Gejima F, Ohmori T, Fujita A, Fukamichi K, Kainuma R, Ishida K 2001 Appl. Phys. Lett. 79 3290

    [12]

    Sutou Y, Imano Y, Koeda N, Omori T, Kainum R, Ishida K, Oikawa K 2004 Appl. Phys. Lett. 85 4358

    [13]

    Wan J F, Wang J N 2005 Physica B 355 172

    [14]

    Jakob G, Elmers H J 2007 J. Magn. Magn. Mater. 310 12779

    [15]

    Liu G D, Dai X F, Yu S Y, Zhu Z Y, Chen J L, Wu G H 2006 Phys. Rev. B 74 054435

    [16]

    Hafner J 2008 J. Comput. Chem. 29 2044

    [17]

    Kresse G Furthmuller J 1996 Phys. Rev. B 54 11169

    [18]

    Torrent M, Jollet F, Bottin F 2008 Comput. Mater. Sci. 42 337

    [19]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [20]

    Helmholdt R B, Buschow K H J 1987 J. Less-Comm. Met. 128 167

    [21]

    Luo L J, Zhong C G, Jiang X F, Fang J H, Jiang Q 2010 Acta Phys. Sin. 59 0521 (in Chinese) [罗礼进, 仲崇贵, 江学范, 方靖淮, 蒋青 2010 物理学报 59 0521]

    [22]

    Godlevsky V V, Rabe K M 2001 Phys. Rev. B 63 134407

    [23]

    Alippi P, Marcus P M, Scheffler M 1997 Phys. Rev. Lett. 78 3892

    [24]

    Marcus P M, Alippi P 1998 Phys. Rev. B 57 1971

    [25]

    Zhao K, Zhang K, Wang J J, Yu J, Wu S X 2011 Acta Phys. Sin. 60 127101 (in Chinese) [赵昆, 张坤, 王家佳, 于金, 吴三械 2011 物理学报 60 127101]

    [26]

    Trambly L G, Nguyen M D, M L 1995 Phys. Rev. B 52 7920

    [27]

    Mehl M J, Osburn J E, Papaconstantopoulos D A, Klein B M 1990 Phys. Rev. B 41 10311

    [28]

    Rached H, Rached D, Khenata R, Reshak Ali H, Rabah M 2009 Phys. Status Solidi B 246 1580

    [29]

    Ozdemir Kart S, Uludogan M, Karaman, Cagin T 2008 Phys. Stat. Sol. A 205 1026

    [30]

    Wallace D C 1972 Thermodynamics of Crystals (New York: John Wiley & Sons) p39

    [31]

    Jona F, Marcus P M 2001 Phys. Rev. B 63 094113

    [32]

    Yuan P F, Zhu W J, Xu J A, Liu S J, Jing F Q 2010 Acta Phys. Sin. 59 8755(in Chinese) [原鹏飞, 祝文军, 徐济安, 刘绍军, 经福谦 2010 物理学报 59 8755]

    [33]

    Hao Y J, Zhang L, Chen X R 2008 Phys. Rev. B 78 134101

    [34]

    Mei Z G, Shang S L, Wang Y 2009 Phys. Rev. B 79 134102

    [35]

    Wang Y, Liu Z K, Chen L Q 2004 Acta Mater. 52 2665

    [36]

    Wang Y, Ahuja R, Johansson B 2004 Int. J. Quantum. Chem. 96 501

    [37]

    Dove M T 1993 Introduction to Lattice Dynamics (Cambridge: Cambridge University Press) p258

    [38]

    Liu G D 2007 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese) [刘国栋 2007 博士学位论文 (重庆: 重庆大学)]

  • [1] Zhao Kun, Zhang Kun, Wang Jia-Jia, Yu Jin, Wu San-Xie. A first principles study on tetragonal distortion, magnetic property and elastic constants of Pd2 CrAl Heusler alloy. Acta Physica Sinica, 2011, 60(12): 127101. doi: 10.7498/aps.60.127101
    [2] Jiang Xue-Fan, Luo Li-Jin, Zhong Chong-Gui, Fang Jing-Huai, Jiang Qing. A first-principles study of electronic structure, magnetism, response to pressure and tetragonal distortions of Ni2MnSi Heusler alloy. Acta Physica Sinica, 2010, 59(1): 521-526. doi: 10.7498/aps.59.521
    [3] Qian Zheng-Nan, Sui Yu, Liu Yu-Qiang, Liu Zhu-Hong, Liu Guo-Dong, Zhang Ming, Cui Yu-Ting, Chen Jing-Lan, Wu Guang-Heng. The contribution of Fe atom to the magnetic moment of quaternary Heusler alloy N iMnFeGa. Acta Physica Sinica, 2003, 52(9): 2304-2308. doi: 10.7498/aps.52.2304
    [4] Jiang En-Hai, Zhu Xing-Feng, Chen Ling-Fu. First-principles study of the electronic structure, magnetism, and spin-polarization in Heusler alloy Co2MnAl(100) surface. Acta Physica Sinica, 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [5] Zhang Wei, Qian Zheng-Nan, Sui Yu, Liu Yu-Qiang, Su Wen-Hui, Zhang Ming, Liu Zhu-Hong, Liu Guo-Dong, Wu Guang-Heng. Magnetism and transport properties of Heusler alloy Co2TiSn. Acta Physica Sinica, 2005, 54(10): 4879-4883. doi: 10.7498/aps.54.4879
    [6] Du Yin, Wang Wen-Hong, Zhang Xiao-Ming, Liu En-Ke, Wu Guang-Heng. Structural, magnetic, transport, and half-metallic properties of Fe2Co1-xCrxSi Heusler alloys. Acta Physica Sinica, 2012, 61(14): 147304. doi: 10.7498/aps.61.147304
    [7] Chen Jia-Hua, Liu En-Ke, Li Yong, Qi Xin, Liu Guo-Dong, Luo Hong-Zhi, Wang Wen-Hong, Wu Guang-Heng. First-principles investigations on tetragonal distortion, electronic structure, magnetism, and phonon dispersion of Ga2XCr (X = Mn, Fe, Co, Ni, Cu) Heusler alloys. Acta Physica Sinica, 2015, 64(7): 077104. doi: 10.7498/aps.64.077104
    [8] Zhao Jing-Jing, Shu Di, Qi Xin, Liu En-Ke, Zhu Wei, Feng Lin, Wang Wen-Hong, Wu Guang-Heng. Structural phase transition and magnetic properties of Co50Fe50-xSix alloys. Acta Physica Sinica, 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.1
    [9] Quan Hong-Rui, Jiang Qing, Jiang Xue-Fan, Luo Li-Jin, Zhong Chong-Gui, Tan Zhi-Zhong. First-principle prediction of magnetic shape memory effect of Heusler alloy Mn2NiGe. Acta Physica Sinica, 2010, 59(11): 8037-8041. doi: 10.7498/aps.59.8037
    [10] Zhao Jing-Jing, Qi Xin, Liu En-Ke, Zhu Wei, Qian Jin-Feng, Li Gui-Jiang, Wang Wen-Hong, Wu Guang-Heng. Structural, magnetic and half-metallic properties of CoFeMnSi alloys. Acta Physica Sinica, 2011, 60(4): 047108. doi: 10.7498/aps.60.047108
    [11] Zhu Wei, Liu En-Ke, Zhang Chang-Zai, Qin Yuan-Bin, Luo Hong-Zhi, Wang Wen-Hong, Du Zhi-Wei, Li Jian-Qi, Wu Guang-Heng. Magnetic property and structure of Heusler alloy: Fe2CrGa. Acta Physica Sinica, 2012, 61(2): 027502. doi: 10.7498/aps.61.027502
    [12] Luo Li-Jin, Zhong Chong-Gui, Fang Jing-Huai, Zhao Yong-Lin, Zhou Peng-Xia, Jiang Xue-Fan. Responses of electronic structure and magnetism to tetragonal distortion and their influence on pressure for the Heusler alloy Mn2 NiAl. Acta Physica Sinica, 2011, 60(12): 127502. doi: 10.7498/aps.60.127502
    [13] Algethami Obaidallah A, Li Ge-Tian, Liu Zhu-Hong, Ma Xing-Qiao. Phase transformation, magnetic properties, and exchange bias of Heusler alloy Mn50–xCrxNi42Sn8. Acta Physica Sinica, 2020, 69(5): 058102. doi: 10.7498/aps.69.20191551
    [14] Liu Xin-Hao, Lin Jing-Bo, Liu Yan-Hui, Jin Ying-Jiu. First-principles study on the electronic structures, magnetism, and half-metallicity of full-Heusler X2YGa (X=Co, Fe, Ni; Y=V,Cr, Mn) alloys. Acta Physica Sinica, 2011, 60(10): 107104. doi: 10.7498/aps.60.107104
    [15] Jia Hong-Ying, Dai Xue-Fang, Wang Li-Ying, Liu Ran, Wang Xiao-Tian, Li Peng-Peng, Cui Yu-Ting, Wang Wen-Hong, Wu Guang-Heng, Liu Guo-Dong. Electronic structures, band-gap origins and magnetisms of Ti2Cr-based alloys with CuHg2Ti-type structure. Acta Physica Sinica, 2014, 63(10): 107103. doi: 10.7498/aps.63.107103
    [16] Dai Xue-Fang, Liu Zhu-Hong, Yu Shu-Yun, Chen Jing-Lan, Wu Guang-Heng, Wang Xin-Qiang, Liu Guo-Dong. Effect of Fe and Co in ferromagnetic shape memory alloy Mn50Ni25-xFe(Co)xGa25. Acta Physica Sinica, 2006, 55(9): 4883-4887. doi: 10.7498/aps.55.4883
    [17] Wen Li-Wei, Wang Yu-Mei, Pei Hui-Xia, Ding Jun. First-principles study of magnetism and electronic structureof Sb-containing half-Heusler alloys. Acta Physica Sinica, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [18] Yao Zhong-Yu, Sun Li, Pan Meng-Mei, Sun Shu-Juan. First-principle studies of half-metallicities and magnetisms of the semi-Heusler alloys CoCrTe and CoCrSb. Acta Physica Sinica, 2016, 65(12): 127501. doi: 10.7498/aps.65.127501
    [19] Wang Ben-Yang, Qian Zheng-Nan, Sui Yu, Liu Yu-Qiang, Su Wen-Hui, Zhang Ming, Liu Zhu-Hong, Liu Guo-Dong, Wu Guang-Heng. Magnetism and transport properties of Heuser alloy Cu2VAl. Acta Physica Sinica, 2005, 54(7): 3386-3390. doi: 10.7498/aps.54.3386
    [20] Liu Xiao-Xu, Zhao Xing-Tao, Zhang Ying, Zhu Yan, Wu Guang-Heng. Fabrication and magnetic properties of Co70Cu30 alloy nanowire arrays with high coercivity. Acta Physica Sinica, 2012, 61(13): 137503. doi: 10.7498/aps.61.137503
  • Citation:
Metrics
  • Abstract views:  1665
  • PDF Downloads:  776
  • Cited By: 0
Publishing process
  • Received Date:  30 March 2012
  • Accepted Date:  14 May 2012
  • Published Online:  05 November 2012

A first principles study on Mn2NiGa Heusler alloy

  • 1. School of Materials Science and Engineering, Southeast University, Nanjing 211189, China;
  • 2. Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China;
  • 3. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China

Abstract: Tetragonal distortion of Mn2NiGa Heusler alloy is calculated by first-principles based on density functional theory with projector augmented wave pseudopotential, and the magnetism, electronic structure, elastic constants and phonon frequencies are also calculated and analyzed. The contribution of the spin magnetic moments of Mn atom to the total moment is largest for Mn2NiGa, and the Mn2NiGa alloy shows ferrimagnetism in these two cases, owning to the antiparallel but unbalanced magnetic moments of Mn (A) atom and Mn (B) atom. Analysis of tetragonal distortion shows that there is a local minimum total energy at c/a=0.94 and c/a=1.27, which corresponds to a stable martensitic phase. Elastic constants of Mn2NiGa reveal that cubic structure does not satisfy stability conditions, but tetragonal structure (c/a=0.94 and c/a=1.27) does. The imaginary values of phonon frequencies in cubic structures validate that tetragonal structure (c/a=0.94 and c/a=1.27) of Mn2NiGa is more stable than cubic structure. The phase transition temperature of c/a=1.27 tetragonal structure converting to cubic structure is about 315 K.

Reference (38)

Catalog

    /

    返回文章
    返回