Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of coupled thermo-mechanical process of friction stir welding in quasi-steady-state

Yin Peng-Fei Zhang Rong Xiong Jiang-Tao Li Jing-Long

Numerical simulation of coupled thermo-mechanical process of friction stir welding in quasi-steady-state

Yin Peng-Fei, Zhang Rong, Xiong Jiang-Tao, Li Jing-Long
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The flow field of plastic deformation and the temperature field during the process of friction stir welding can directly affect the structure evolution of the welded joint, and also have a great influence on mechanical properties of the final joint. In this respect, therfore, a lot of researches have been carried out. The recent research results show that this process is an extremely complex coupled thermal-mechanical process, the temperature field couples together with the flow field of plastic deformation of the material. In this paper, the coupled process is simulated based on hydromechanics and heat transfer theory; the flow field of plastic deformation and the temperature field are calculated; an experiment is designed to measure the temperature field, which indicates that the computed results can exactly describe the coupled thermal-mechanical condition of the friction stir welding in quasi-steady-state.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51071123), and the Graduate Starting Seed Fund of Northwestern Polytechnical University, China (Grant No. Z2012151).
    [1]

    Mishra R S, Ma Z Y 2005 Mater. Sci. Eng. 50 1

    [2]

    Heurtier P, Jones M J, Desrayaud C, Driver J H, Montheillet F, Allehaux D 2006 J. Mater. Process. Technol. 171 348

    [3]

    Hamilton C, Dymek S, Blicharski M 2008 Mater. Charact. 59 1206

    [4]

    Jacquin D, de Meester B, Simar A, Deloison D, Montheillet F, Desrayaud C 2011 J. Mater. Process. Technol. 211 57

    [5]

    Wang X H, Wang K S, Xu K W, Hu K 2006 Ordn. Mater. Sci. Eng. 29 47 (in Chinese) [王训宏, 王快社, 许可为, 胡锴 2006 兵器材料科学与工程 29 47]

    [6]

    Wang X J, Han X H 2006 Electr. Weld. Mach. 36 48 (in Chinese) [王希靖, 韩晓辉 2006 电焊机 36 48]

    [7]

    Deng X M, Xu S W 2004 J. Manuf. Processes 6 125

    [8]

    Chao Y J, Qi X 1998 J. Mater. Process. Manuf. Sci. 7 215

    [9]

    Zhu X K, Chao Y J 2004 J. Mater. Process. Technol. 146 263

    [10]

    Xu W F, Liu J H 2010 Trans. China Weld. Inst. 31 63 (in Chinese) [徐韦锋, 刘金合, 朱宏强 2010 焊接学报 31 63]

    [11]

    Zhao J M, Wang Y, Yin X, Zhang H 2008 Mater. Mech. Eng. 32 78 (in Chinese) [赵俊敏, 王玉, 尹欣, 张辉 2008 机械工程材料 32 78]

    [12]

    Wang X J, Han X H, Guo R J, Li J 2005 Trans. China Weld. Inst. 26 17 (in Chinese) [王希靖, 韩晓辉, 郭瑞杰, 李晶 2005焊接学报 26 17]

    [13]

    Song M, Kovacevic R 2003 Int. J. Mach. Tools Manuf. 43 605

    [14]

    Fourment L, Guerdoux S 2004 5th International Friction Stir Welding Symposium Metz, France, September 14-16, 2004 p1259

    [15]

    Ulysse P 2002 Int. J. Mach. Tools Manuf. 42 1549

    [16]

    Hamilton C, Sommers A, Dymek S 2009 Int. J. Mach. Tools Manuf. 49 230

    [17]

    Shi Q Y, Wang X B, Kang X, Sun Y J 2010 J. Tsinghua Univ. (Sci. Technol.) 50 980 (in Chinese) [史清宇, 王细波, 康旭, 孙延军 2010 清华大学学报(自然科学版) 50 980]

    [18]

    Mendez P F, Tello K E, Lienert T J 2010 Acta Mater. 58 6012

    [19]

    Jacquin D, de Meester B, Simar A, Deloison D, Montheillet F, Desrayaud C 2011 J. Mater. Process. Technol. 211 57

    [20]

    Colegrove P A, Shercliff H R 2005 J. Mater. Process. Technol. 169 320

    [21]

    Hilgert J, Huetsch L L, Santos J F dos, Huber N 2010 COMSOL Conference 2010 Paris Paris, France, November 17-19, 2010

    [22]

    Zhang Z, Liu Y L, Chen J T, Zhang H W 2007 Trans. China Weld. Inst. 28 17 (in Chinese) [张昭, 刘亚丽, 陈金涛, 张洪武 2007 焊接学报 28 17]

    [23]

    Guerra M, Schmidt C, McClure J C, Murr L E, Nunes A C 2003 Mater. Charact. 49 95

    [24]

    Xu W F, Liu J H, Luan G H, Dong C L, Tang J Y, Li G 2008 Mech. Sci. Technol. Aerosp. Eng. 27 1159 (in Chinese) [徐韦峰, 刘金合, 栾国红, 董春林, 唐建宇, 李光 2008 机械科学与技术 27 1159]

    [25]

    Su X L, Wang K S, Zhou J J 2006 Weld. Technol. 35 12 (in Chinese) [苏晓莉, 王快社, 周俊杰 2006 焊接技术 35 12]

    [26]

    Zhou X Y, Ke L M, Liu G P, Xing L, Xia C, Tang X C 2003 New Technol. New Process 10 32 (in Chinese) [周细应, 柯黎明, 刘鸽平, 邢丽, 夏春, 汤旭昌 2003 新技术新工艺 10 32]

  • [1]

    Mishra R S, Ma Z Y 2005 Mater. Sci. Eng. 50 1

    [2]

    Heurtier P, Jones M J, Desrayaud C, Driver J H, Montheillet F, Allehaux D 2006 J. Mater. Process. Technol. 171 348

    [3]

    Hamilton C, Dymek S, Blicharski M 2008 Mater. Charact. 59 1206

    [4]

    Jacquin D, de Meester B, Simar A, Deloison D, Montheillet F, Desrayaud C 2011 J. Mater. Process. Technol. 211 57

    [5]

    Wang X H, Wang K S, Xu K W, Hu K 2006 Ordn. Mater. Sci. Eng. 29 47 (in Chinese) [王训宏, 王快社, 许可为, 胡锴 2006 兵器材料科学与工程 29 47]

    [6]

    Wang X J, Han X H 2006 Electr. Weld. Mach. 36 48 (in Chinese) [王希靖, 韩晓辉 2006 电焊机 36 48]

    [7]

    Deng X M, Xu S W 2004 J. Manuf. Processes 6 125

    [8]

    Chao Y J, Qi X 1998 J. Mater. Process. Manuf. Sci. 7 215

    [9]

    Zhu X K, Chao Y J 2004 J. Mater. Process. Technol. 146 263

    [10]

    Xu W F, Liu J H 2010 Trans. China Weld. Inst. 31 63 (in Chinese) [徐韦锋, 刘金合, 朱宏强 2010 焊接学报 31 63]

    [11]

    Zhao J M, Wang Y, Yin X, Zhang H 2008 Mater. Mech. Eng. 32 78 (in Chinese) [赵俊敏, 王玉, 尹欣, 张辉 2008 机械工程材料 32 78]

    [12]

    Wang X J, Han X H, Guo R J, Li J 2005 Trans. China Weld. Inst. 26 17 (in Chinese) [王希靖, 韩晓辉, 郭瑞杰, 李晶 2005焊接学报 26 17]

    [13]

    Song M, Kovacevic R 2003 Int. J. Mach. Tools Manuf. 43 605

    [14]

    Fourment L, Guerdoux S 2004 5th International Friction Stir Welding Symposium Metz, France, September 14-16, 2004 p1259

    [15]

    Ulysse P 2002 Int. J. Mach. Tools Manuf. 42 1549

    [16]

    Hamilton C, Sommers A, Dymek S 2009 Int. J. Mach. Tools Manuf. 49 230

    [17]

    Shi Q Y, Wang X B, Kang X, Sun Y J 2010 J. Tsinghua Univ. (Sci. Technol.) 50 980 (in Chinese) [史清宇, 王细波, 康旭, 孙延军 2010 清华大学学报(自然科学版) 50 980]

    [18]

    Mendez P F, Tello K E, Lienert T J 2010 Acta Mater. 58 6012

    [19]

    Jacquin D, de Meester B, Simar A, Deloison D, Montheillet F, Desrayaud C 2011 J. Mater. Process. Technol. 211 57

    [20]

    Colegrove P A, Shercliff H R 2005 J. Mater. Process. Technol. 169 320

    [21]

    Hilgert J, Huetsch L L, Santos J F dos, Huber N 2010 COMSOL Conference 2010 Paris Paris, France, November 17-19, 2010

    [22]

    Zhang Z, Liu Y L, Chen J T, Zhang H W 2007 Trans. China Weld. Inst. 28 17 (in Chinese) [张昭, 刘亚丽, 陈金涛, 张洪武 2007 焊接学报 28 17]

    [23]

    Guerra M, Schmidt C, McClure J C, Murr L E, Nunes A C 2003 Mater. Charact. 49 95

    [24]

    Xu W F, Liu J H, Luan G H, Dong C L, Tang J Y, Li G 2008 Mech. Sci. Technol. Aerosp. Eng. 27 1159 (in Chinese) [徐韦峰, 刘金合, 栾国红, 董春林, 唐建宇, 李光 2008 机械科学与技术 27 1159]

    [25]

    Su X L, Wang K S, Zhou J J 2006 Weld. Technol. 35 12 (in Chinese) [苏晓莉, 王快社, 周俊杰 2006 焊接技术 35 12]

    [26]

    Zhou X Y, Ke L M, Liu G P, Xing L, Xia C, Tang X C 2003 New Technol. New Process 10 32 (in Chinese) [周细应, 柯黎明, 刘鸽平, 邢丽, 夏春, 汤旭昌 2003 新技术新工艺 10 32]

  • [1] Feng Yong-Ping, Deng Ming-Xiang, Cui Jun-Zhi. The two-scale finite element computation for thermoelastic problem in periodic perforated domain. Acta Physica Sinica, 2009, 58(13): 327-S337. doi: 10.7498/aps.58.327
    [2] Liu Yang, Han Yan-Long, Jia Fu-Guo, Yao Li-Na, Wang Hui, Shi Yu-Fei. Numerical simulation on stirring motion and mixing characteristics of ellipsoid particles. Acta Physica Sinica, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [3] Wang Xin-Xin, Fan Ding, Huang Jian-Kang, Huang Yong. Numerical simulation of coupled arc in double electrode tungsten inert gas welding. Acta Physica Sinica, 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [4] Yao Xiao-Hu, Han Qiang. Torsional buckling of a double-walled carbon nanotube under the action of coupled thermo-mechanical load. Acta Physica Sinica, 2008, 57(8): 5056-5062. doi: 10.7498/aps.57.5056
    [5] Yu Ming-Hao. Numerical investigation on interaction mechanisms between flow field and electromagnetic field for nonequilibrium inductively coupled plasma. Acta Physica Sinica, 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [6] Gao Xin-Qiang, Shen Jun, He Xiao-Nan, Tang Cheng-Chun, Dai Wei, Li Ke, Gong Mao-Qiong, Wu Jian-Feng. Numerical simulation of a hybrid magnetic refrigeration combined with high pressure Stirling regenerative refrigeration effect. Acta Physica Sinica, 2015, 64(21): 210201. doi: 10.7498/aps.64.210201
    [7] Shen Ke, Zhang Xu. Unilaterally coupled synchronization of spatiotemporal chaos. Acta Physica Sinica, 2002, 51(12): 2702-2706. doi: 10.7498/aps.51.2702
    [8] Bai Zhao-Guo, Dong Li-Fang, Li Yong-Hui, Fan Wei-Li. Superlattice patterns in a coupled two-layer Lengel-Epstein model. Acta Physica Sinica, 2011, 60(11): 118201. doi: 10.7498/aps.60.118201
    [9] Wang Cun-Hai, Zheng Shu, Zhang Xin-Xin. Discontinuous finite element solutions for coupled radiation-conduction heat transfer in irregular media. Acta Physica Sinica, 2020, 69(3): 034401. doi: 10.7498/aps.69.20191185
    [10] Liu Lei, Fei Jian-Fang, Huang Xiao-Gang, Cheng Xiao-Ping. The development of atmosphere-current-wave fully coupled model and its application during a typhoon process. Acta Physica Sinica, 2012, 61(14): 149201. doi: 10.7498/aps.61.149201
    [11] Li Yan-Yang, Yang Shi-E, Chen Yong-Sheng, Zhou Jian-Peng, Li Xin-Li, Lu Jing-Xiao. The study of capacitively-coupled hydrogen plasma at very high frequency. Acta Physica Sinica, 2012, 61(16): 165203. doi: 10.7498/aps.61.165203
    [12] Nie Tao, Liu Wei-Qiang. Study of coupled fluid and solid for a hypersonic lending edge. Acta Physica Sinica, 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
    [13] Liu Fu-Cheng, Liu Ya-Hui, Zhou Zhi-Xiang, Guo Xue, Dong Meng-Fei. Super-lattice patterns in two-layered coupled non-symmetric reaction diffusion systems. Acta Physica Sinica, 2020, 69(2): 028201. doi: 10.7498/aps.69.20191353
    [14] Cai Li-Bing, Wang Jian-Guo. Numerical simulation of the breakdown on HPM dielectric surface. Acta Physica Sinica, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [15] Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Jiang Xiao-Wei, Zhu Yan. Numerical simulation of particle segregation behavior in different vibration modes. Acta Physica Sinica, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [16] Chen Shi, Wang Hui, Shen Sheng-Qiang, Liang Gang-Tao. The drop oscillation model and the comparison with the numerical simulations. Acta Physica Sinica, 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [17] Ding Bo-Jiang, Kuang Guang-Li, Liu Yue-Xiu, Shen Wei-Ci, Yu Jia-Wen, Shi Yao-Jiang. . Acta Physica Sinica, 2002, 51(11): 2556-2561. doi: 10.7498/aps.51.2556
    [18] Zuo Juan-Li, Yang Hong, Wei Bing-Qian, Hou Jing-Ming, Zhang Kai. Numerical simulation of gas-liquid two-phase flow in gas lift system. Acta Physica Sinica, 2020, 69(6): 064705. doi: 10.7498/aps.69.20191755
    [19] Zhang Yuan-Tao, Wang De-Zhen, Wang Yan-Hui. Numerical simulation of filamentary discharge controlled by dielectric barrier at atmospheric pressure. Acta Physica Sinica, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [20] Zhu Chang-Sheng, Wang Zhi-Ping, Xiao Rong-Zhen, Jing Tao. Numerical simulation of solute segregation patterns for a binary alloy using phase-field approach. Acta Physica Sinica, 2006, 55(3): 1502-1507. doi: 10.7498/aps.55.1502
  • Citation:
Metrics
  • Abstract views:  1408
  • PDF Downloads:  1436
  • Cited By: 0
Publishing process
  • Received Date:  20 June 2012
  • Accepted Date:  24 July 2012
  • Published Online:  05 January 2013

Numerical simulation of coupled thermo-mechanical process of friction stir welding in quasi-steady-state

  • 1. School of Science, Northwestern Polytechnical University, Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Xi’an 710072, China;
  • 2. School of Material Science and Engineering, Northwestern Polytechnical University, Shaanxi Key Laboratary of Friction Welding Technologies, Xi’an 710072, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 51071123), and the Graduate Starting Seed Fund of Northwestern Polytechnical University, China (Grant No. Z2012151).

Abstract: The flow field of plastic deformation and the temperature field during the process of friction stir welding can directly affect the structure evolution of the welded joint, and also have a great influence on mechanical properties of the final joint. In this respect, therfore, a lot of researches have been carried out. The recent research results show that this process is an extremely complex coupled thermal-mechanical process, the temperature field couples together with the flow field of plastic deformation of the material. In this paper, the coupled process is simulated based on hydromechanics and heat transfer theory; the flow field of plastic deformation and the temperature field are calculated; an experiment is designed to measure the temperature field, which indicates that the computed results can exactly describe the coupled thermal-mechanical condition of the friction stir welding in quasi-steady-state.

Reference (26)

Catalog

    /

    返回文章
    返回