搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速飞行器前缘流固耦合计算方法研究

聂涛 刘伟强

高超声速飞行器前缘流固耦合计算方法研究

聂涛, 刘伟强
PDF
导出引用
导出核心图
  • 对高超声速流场和结构温度场进行了耦合计算分析, 同时基于准静态假设对结构应力进行了分析. 流场部分采用基于非定常Navier-Stokes (N-S)方程的有限体积法, 湍流模型采用SST k-ω 模型, 固体部分采用基于非稳态热传导方程的有限元法, 同时基于准静态假设对固体结构的应力应变进行了分析. 在流固交界面处, 高速流体从固体结构得到温度边界条件, 固体结构从高速流体得到热流边界条件, 从而实现了流场和固体温度场的紧耦合计算.通过与超声速无限长圆管绕流试验结果进行对比, 验证了该方法的可靠性. 同时对二维圆管结构在气动加热过程中的温度、应力等的变化进行了比较详细的分析. 研究结果表明: 随着气动加热时间的推进, 由于圆管结构的高温区在不断扩大, 导致了结构的热变形在不断地增大; 圆管最小变形区出现在θ为60°处; 同时研究发现在计算时间内圆管热变形对外部流场的影响可以忽略不计.
    • 基金项目: 国家自然科学基金(批准号: 90916018)和高等学校博士学科点专项科研基金(批准号: 200899980006)资助的课题.
    [1]

    Yan C, Yu J J, Li J Z 2006 Acta Aero. Sin. 24 125 (in Chinese) [阎超, 禹建军, 李君哲 2006 空气动力学学报 24 125]

    [2]

    Li P F, Wu S P 2010 J. Aero. Power 25 1705 (in Chinese) [李鹏飞, 吴颂平 2010 航空动力学报 25 1705]

    [3]

    Pramote D, Earl A T, Allan R W 1988 AIAA 1988-2245

    [4]

    Allan R W, Michael S H 1987 AIAA 1987-1511

    [5]

    Xia G, Liu X J, Cheng W K, Qin Z Z 2003 J. National Univ. Defense Tec. 25 35 (in Chinese) [夏刚, 刘新建, 程文科, 秦子增 2003 国防科技大学学报 25 35]

    [6]

    Feng Y P, Cui J Z, Deng M X 2009 Acta Phys. Sin. 58 327 (in Chinese) [冯永平, 崔俊芝, 邓明香 2009 物理学报 58 327]

    [7]

    Yao X H, Han Q 2008 Acta Phys. Sin. 57 5056 (in Chinese) [姚小虎, 韩强 2008 物理学报 57 5056]

    [8]

    Zhou Y, Qian W Q, Deng Y Q, Ma M S 2010 Acta Aero. Sin. 28 213 (in Chinese) [周宇, 钱炜祺, 邓有奇, 马明生 2010 空气动力学报 28 213]

    [9]

    Menter F R 1993 AIAA 1993-2906

    [10]

    Peng Z Q, Zhang J F, Niu B, Mu D 2011 Mechanics Engineering 33 18 (in Chinese) [彭志琦, 张均峰, 牛斌, 穆丹 2011 力学与实践 33 18]

    [11]

    Li P F, Wu S P 2010 Missiles Space Vehicle 6 34 (in Chinese) [李鹏飞, 吴颂平 2010 导弹与航天运载技术 6 34]

    [12]

    Huang T, Mao G L, Jiang G Q, Zhou W J 2000 Acta Aero. Sin. 18 115 (in Chinese) [黄唐, 毛国良, 姜贵庆, 周伟江 2000 空气动力学报 18 115]

    [13]

    Giles M B 1997 Int. J. Numerical Methods Fluids 25 421

    [14]

    Ramon C, Houzeaux G 2006 Int. J. Numerical Methods Fluids 52 963

    [15]

    Allen R W 1987 NASA TM-100484

  • [1]

    Yan C, Yu J J, Li J Z 2006 Acta Aero. Sin. 24 125 (in Chinese) [阎超, 禹建军, 李君哲 2006 空气动力学学报 24 125]

    [2]

    Li P F, Wu S P 2010 J. Aero. Power 25 1705 (in Chinese) [李鹏飞, 吴颂平 2010 航空动力学报 25 1705]

    [3]

    Pramote D, Earl A T, Allan R W 1988 AIAA 1988-2245

    [4]

    Allan R W, Michael S H 1987 AIAA 1987-1511

    [5]

    Xia G, Liu X J, Cheng W K, Qin Z Z 2003 J. National Univ. Defense Tec. 25 35 (in Chinese) [夏刚, 刘新建, 程文科, 秦子增 2003 国防科技大学学报 25 35]

    [6]

    Feng Y P, Cui J Z, Deng M X 2009 Acta Phys. Sin. 58 327 (in Chinese) [冯永平, 崔俊芝, 邓明香 2009 物理学报 58 327]

    [7]

    Yao X H, Han Q 2008 Acta Phys. Sin. 57 5056 (in Chinese) [姚小虎, 韩强 2008 物理学报 57 5056]

    [8]

    Zhou Y, Qian W Q, Deng Y Q, Ma M S 2010 Acta Aero. Sin. 28 213 (in Chinese) [周宇, 钱炜祺, 邓有奇, 马明生 2010 空气动力学报 28 213]

    [9]

    Menter F R 1993 AIAA 1993-2906

    [10]

    Peng Z Q, Zhang J F, Niu B, Mu D 2011 Mechanics Engineering 33 18 (in Chinese) [彭志琦, 张均峰, 牛斌, 穆丹 2011 力学与实践 33 18]

    [11]

    Li P F, Wu S P 2010 Missiles Space Vehicle 6 34 (in Chinese) [李鹏飞, 吴颂平 2010 导弹与航天运载技术 6 34]

    [12]

    Huang T, Mao G L, Jiang G Q, Zhou W J 2000 Acta Aero. Sin. 18 115 (in Chinese) [黄唐, 毛国良, 姜贵庆, 周伟江 2000 空气动力学报 18 115]

    [13]

    Giles M B 1997 Int. J. Numerical Methods Fluids 25 421

    [14]

    Ramon C, Houzeaux G 2006 Int. J. Numerical Methods Fluids 52 963

    [15]

    Allen R W 1987 NASA TM-100484

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2654
  • PDF下载量:  652
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-01
  • 修回日期:  2012-02-23
  • 刊出日期:  2012-09-05

高超声速飞行器前缘流固耦合计算方法研究

  • 1. 国防科技大学, 高超声速冲压发动机技术重点实验室, 长沙 410073
    基金项目: 

    国家自然科学基金(批准号: 90916018)和高等学校博士学科点专项科研基金(批准号: 200899980006)资助的课题.

摘要: 对高超声速流场和结构温度场进行了耦合计算分析, 同时基于准静态假设对结构应力进行了分析. 流场部分采用基于非定常Navier-Stokes (N-S)方程的有限体积法, 湍流模型采用SST k-ω 模型, 固体部分采用基于非稳态热传导方程的有限元法, 同时基于准静态假设对固体结构的应力应变进行了分析. 在流固交界面处, 高速流体从固体结构得到温度边界条件, 固体结构从高速流体得到热流边界条件, 从而实现了流场和固体温度场的紧耦合计算.通过与超声速无限长圆管绕流试验结果进行对比, 验证了该方法的可靠性. 同时对二维圆管结构在气动加热过程中的温度、应力等的变化进行了比较详细的分析. 研究结果表明: 随着气动加热时间的推进, 由于圆管结构的高温区在不断扩大, 导致了结构的热变形在不断地增大; 圆管最小变形区出现在θ为60°处; 同时研究发现在计算时间内圆管热变形对外部流场的影响可以忽略不计.

English Abstract

参考文献 (15)

目录

    /

    返回文章
    返回