Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Distribution characteristics of lightning electromagnetic pulsed fields under the ground

Zhang Shao-Qing Wu Qun

Distribution characteristics of lightning electromagnetic pulsed fields under the ground

Zhang Shao-Qing, Wu Qun
PDF
Get Citation
  • In order to repeat the propagation and its distribution characteristics, the lightning electromagnetic field (LEMP) in the entire space is calculated by a modified finite difference time-domain (FDTD) approach in this paper. Different from issued results, in which the electromagnetic field operates only at some discrete points near the ground, the LEMP and its time derivatives, power density and energy density at each unit in the whole space under the ground are calculated and expressed as groups of pictures. We find LEMPs attenuate exponentially in the horizontal and vertical direction, in the area near the ground and far from the discharge channel. The peak values of horizontal electric field and azimuthal magnetic field each have an unaltered polarity and their contours are similar to double exponential functions in the entire space under the ground. However the peak values of vertical electric field can be divided into two opposite-polarity parts in the whole area under the ground, and the contours in the area near the strike channel are spherical in shape. The other components have similar features. We also calculate the LEMPs with different values of ground conductivity, ground permittivity, return model and base current, and the characteristics of distribution are not changed, although the values are enhanced integrally in some cases. And in the layered earth, the LEMP has similar contours inside the layers. Even in the case of striking to the lightning rod, the characteristics of distribution are not changed. These patterns and distribution characteristics of LEMP can provide support and reference in shielding design and route planning under the ground.
    [1]

    Rachidi F 2011 11th International Symposium on Lightning Protection, Fortaleza, Brazil, October 3-7, 2011 p304

    [2]

    Rakov V A, Rachidi F 2009 IEEE Trans. Electromagn. Compat. 51 428

    [3]

    Wang C X, Qie X S, Jiang R B, Yang J 2012 Acta Phys. Sin. 61 039203 (in Chinese) [王彩霞, 郄秀书, 蒋如斌, 杨静 2012 物理学报 61 039203]

    [4]

    Jiang R B, Qie X S, Wang C X, Yang J, Zhang Q L, Liu M Y, Wang J F, Liu D X, Pan L X 2011 Acta Phys. Sin. 60 079201 (in Chinese) [蒋如斌, 郄秀书, 王彩霞, 杨静, 张其林, 刘明远, 王俊芳, 刘冬霞, 潘伦湘 2011 物理学报 60 079201]

    [5]

    Zhao Y, Qie X S, Kong X Z, Zhang G S, Zhang T, Yang J, Feng G L, Zhang Q L, Wang D F 2009 Acta Phys. Sin. 58 6616 (in Chinese) [赵阳, 郄秀书, 孔祥贞, 张广庶, 张彤, 杨静, 冯桂力, 张其林, 王东方 2009 物理学报 58 6616]

    [6]

    Cooray V 2010 IEEE Trans. Electromagn. Compat. 52 936

    [7]

    Delfino F, Procopio R, Rossi M, Rachidi F, Nucci C A 2007 IEEE Trans. Electromagn. Compat. 49 401

    [8]

    Yang C, Zhou B 2004 IEEE Trans. Electromagn. Compat. 46 133

    [9]

    Yang J, Qie X S, Wang J G, Zhao Y, Zhang Q L, Yuan T, Zhou Y J, Feng G L 2008 Acta Phys. Sin. 57 1968 (in Chinese) [杨静, 郄秀书, 王建国, 赵阳, 张其林, 袁铁, 周筠珺, 冯桂力 2008 物理学报 57 1968]

    [10]

    Yang B, Zhou B H, Gao C, Shi L H, Chen B, Chen H L 2011 IEEE Trans. Electromagn. Compat. 53 256

    [11]

    Kirawanich P, Kranthi N, Gunda R, Stillwell A R, Islam N E 2004 J. Appl. Phys. 96 5892

    [12]

    Delfino F, Procopio R, Rossi M, Rachidi F 2009 J. Geophys. Res. 114

    [13]

    Zhang Q L, Yang J, Jing X Q, Li D S, Wang Z H 2012 Atmos. Res. 104 202

    [14]

    Cooray V, Rakov V A 2011 IEEE Trans. Electromagn. Compat. 53 773

    [15]

    Novak T, Fisher T J 2001 IEEE Trans. Ind. Appl. 37 1555

    [16]

    Petrache E, Rachidi F, Paolone M, Nucci C A, Rakov V A, Uman M A 2005 IEEE Trans. Electromagn. Compat. 47 498

    [17]

    Cooray V 2001 IEEE Trans. Electromagn. Compat. 43 75

    [18]

    Paolone M, Petrache E, Rachidi F, Nucci C A, Rakov V A, Uman M A, Jordan D, Rambo K, Jerauld J, Nyffeler M, Schoene J 2005 IEEE Trans. Electromagn. Compat. 47 509

    [19]

    Yang B, Zhou B H, Chen B, Wang J B, Meng X 2012 IEEE Trans. Electromagn. Compat. 54 323

    [20]

    Yang B, Zhou B H, Meng X 2010 Acta Phys. Sin. 59 8978 (in Chinese) [杨波, 周璧华, 孟鑫 2010 物理学报 59 8978]

    [21]

    Barbosa C F, Paulino J O S 2010 IEEE Trans. Electromagn. Compat. 52 640

    [22]

    Delfino F, Girdinio P, Procopio R, Rossi M, Rachidi F 2011 IEEE Trans. Electromagn. Compat. 53 755

    [23]

    Ren H M, Zhou B H, Rakov V A, Shi L H, Gao C, Yang J H 2008 IEEE Trans. Electromagn. Compat. 50 651

    [24]

    Shoory A, Moini R, Sadeghi S H H, Rakov V A 2005 IEEE Trans. Electromagn. Compat. 47 131

    [25]

    Mimouni A, Rachidi F, Azzouz Z 2008 J. Electrostat. 66 504

    [26]

    Li D M, Wang C, Liu X H 2011 IEEE Trans. Electromagn. Compat. 53 395

    [27]

    Caligaris C, Delfino F, Procopio R 2008 IEEE Trans. Electromagn. Compat. 50 194

    [28]

    He J L, Zeng R 2007 Grounding Technology of Power System (Beijing: Science Press) p23 (in Chinese) [何金良, 曾嵘 2007 电力系统接地技术 (北京: 科学出版社) 第23页]

    [29]

    Philip P B, Thomas A S, Andre R E, Jean P B 1996 IEEE Trans. Power Del. 11 980

    [30]

    Yoshihiro B, Vladimir A R 2005 J. Geophys. Res. 110 D03101

  • [1]

    Rachidi F 2011 11th International Symposium on Lightning Protection, Fortaleza, Brazil, October 3-7, 2011 p304

    [2]

    Rakov V A, Rachidi F 2009 IEEE Trans. Electromagn. Compat. 51 428

    [3]

    Wang C X, Qie X S, Jiang R B, Yang J 2012 Acta Phys. Sin. 61 039203 (in Chinese) [王彩霞, 郄秀书, 蒋如斌, 杨静 2012 物理学报 61 039203]

    [4]

    Jiang R B, Qie X S, Wang C X, Yang J, Zhang Q L, Liu M Y, Wang J F, Liu D X, Pan L X 2011 Acta Phys. Sin. 60 079201 (in Chinese) [蒋如斌, 郄秀书, 王彩霞, 杨静, 张其林, 刘明远, 王俊芳, 刘冬霞, 潘伦湘 2011 物理学报 60 079201]

    [5]

    Zhao Y, Qie X S, Kong X Z, Zhang G S, Zhang T, Yang J, Feng G L, Zhang Q L, Wang D F 2009 Acta Phys. Sin. 58 6616 (in Chinese) [赵阳, 郄秀书, 孔祥贞, 张广庶, 张彤, 杨静, 冯桂力, 张其林, 王东方 2009 物理学报 58 6616]

    [6]

    Cooray V 2010 IEEE Trans. Electromagn. Compat. 52 936

    [7]

    Delfino F, Procopio R, Rossi M, Rachidi F, Nucci C A 2007 IEEE Trans. Electromagn. Compat. 49 401

    [8]

    Yang C, Zhou B 2004 IEEE Trans. Electromagn. Compat. 46 133

    [9]

    Yang J, Qie X S, Wang J G, Zhao Y, Zhang Q L, Yuan T, Zhou Y J, Feng G L 2008 Acta Phys. Sin. 57 1968 (in Chinese) [杨静, 郄秀书, 王建国, 赵阳, 张其林, 袁铁, 周筠珺, 冯桂力 2008 物理学报 57 1968]

    [10]

    Yang B, Zhou B H, Gao C, Shi L H, Chen B, Chen H L 2011 IEEE Trans. Electromagn. Compat. 53 256

    [11]

    Kirawanich P, Kranthi N, Gunda R, Stillwell A R, Islam N E 2004 J. Appl. Phys. 96 5892

    [12]

    Delfino F, Procopio R, Rossi M, Rachidi F 2009 J. Geophys. Res. 114

    [13]

    Zhang Q L, Yang J, Jing X Q, Li D S, Wang Z H 2012 Atmos. Res. 104 202

    [14]

    Cooray V, Rakov V A 2011 IEEE Trans. Electromagn. Compat. 53 773

    [15]

    Novak T, Fisher T J 2001 IEEE Trans. Ind. Appl. 37 1555

    [16]

    Petrache E, Rachidi F, Paolone M, Nucci C A, Rakov V A, Uman M A 2005 IEEE Trans. Electromagn. Compat. 47 498

    [17]

    Cooray V 2001 IEEE Trans. Electromagn. Compat. 43 75

    [18]

    Paolone M, Petrache E, Rachidi F, Nucci C A, Rakov V A, Uman M A, Jordan D, Rambo K, Jerauld J, Nyffeler M, Schoene J 2005 IEEE Trans. Electromagn. Compat. 47 509

    [19]

    Yang B, Zhou B H, Chen B, Wang J B, Meng X 2012 IEEE Trans. Electromagn. Compat. 54 323

    [20]

    Yang B, Zhou B H, Meng X 2010 Acta Phys. Sin. 59 8978 (in Chinese) [杨波, 周璧华, 孟鑫 2010 物理学报 59 8978]

    [21]

    Barbosa C F, Paulino J O S 2010 IEEE Trans. Electromagn. Compat. 52 640

    [22]

    Delfino F, Girdinio P, Procopio R, Rossi M, Rachidi F 2011 IEEE Trans. Electromagn. Compat. 53 755

    [23]

    Ren H M, Zhou B H, Rakov V A, Shi L H, Gao C, Yang J H 2008 IEEE Trans. Electromagn. Compat. 50 651

    [24]

    Shoory A, Moini R, Sadeghi S H H, Rakov V A 2005 IEEE Trans. Electromagn. Compat. 47 131

    [25]

    Mimouni A, Rachidi F, Azzouz Z 2008 J. Electrostat. 66 504

    [26]

    Li D M, Wang C, Liu X H 2011 IEEE Trans. Electromagn. Compat. 53 395

    [27]

    Caligaris C, Delfino F, Procopio R 2008 IEEE Trans. Electromagn. Compat. 50 194

    [28]

    He J L, Zeng R 2007 Grounding Technology of Power System (Beijing: Science Press) p23 (in Chinese) [何金良, 曾嵘 2007 电力系统接地技术 (北京: 科学出版社) 第23页]

    [29]

    Philip P B, Thomas A S, Andre R E, Jean P B 1996 IEEE Trans. Power Del. 11 980

    [30]

    Yoshihiro B, Vladimir A R 2005 J. Geophys. Res. 110 D03101

  • [1] Cao Dong-Jie, Qie Xiu-Shu, Duan Shu, Xuan Yue-Jian, Wang Dong-Fang. Lightning discharge process based on short-baseline lightning VHF radiation source locating system. Acta Physica Sinica, 2012, 61(6): 069202. doi: 10.7498/aps.61.069202
    [2] Zhang Qi-Lin, Liu Ming-Yuan, Qie Xiu-Shu, Yang Jing, Jiang Ru-Bin, Wang Cai-Xia, Wang Jun-Fang, Liu Dong-Xia, Pan Lun-Xiang. Lightning M-components with peak currents of kilo amperes and their mechanism. Acta Physica Sinica, 2011, 60(7): 079201. doi: 10.7498/aps.60.079201
    [3] Gou Xue-Qiang, Zhang Yi-Jun, Li Ya-Jun, Chen Ming-Li. Theroy and observation of bidirectional leader of lightning: Polarity asymmetry, instability, and intermittency. Acta Physica Sinica, 2018, 67(20): 205201. doi: 10.7498/aps.67.20181079
    [4] Liu Dong-Xia, Qie Xiu-Shu, Wang Zhi-Chao, Wu Xue-Ke, Pan Lun-Xiang. Characteristics of lightning radiation source distribution and charge structure of squall line. Acta Physica Sinica, 2013, 62(21): 219201. doi: 10.7498/aps.62.219201
    [5] Zhang Jin-Cheng, Zheng Peng-Tian, Dong Zuo-Dian, Duan Huan-Tao, Ni Jin-Yu, Zhang Jin-Feng, Hao Yue. The effect of back-barrier layer on the carrier distribution in the AlGaN/GaN double-heterostructure. Acta Physica Sinica, 2009, 58(5): 3409-3415. doi: 10.7498/aps.58.3409
    [6] Wang Xue-Juan, Yuan Ping, Cen Jian-Yong, Zhang Ting-Long, Xue Si-Min, Zhao Jin-Cui, Xu He. Study on the radius and energy transmission properties of lightning discharge channel by the spectra. Acta Physica Sinica, 2013, 62(10): 109201. doi: 10.7498/aps.62.109201
    [7] Lan Peng_Fei, Lu Pei_Xiang, Cao Wei. Spatial distribution of Thomson scattering driven by ultrashort laser pulse. Acta Physica Sinica, 2007, 56(5): 2482-2487. doi: 10.7498/aps.56.2482
    [8] Simulation study of ring current properties during main phase of storm. Acta Physica Sinica, 2007, 56(12): 7346-7354. doi: 10.7498/aps.56.7346
    [9] The distribution of dust particles in the plasma sheath. Acta Physica Sinica, 2007, 56(12): 7090-7099. doi: 10.7498/aps.56.7090
    [10] Jing Feng, Peng Zhi-Tao, Liu Hong-Jun, Zhao Wei, Wang Yi-Shan, Lu Zong-Gui. Theoretical analysis of spectral properties of parametric fluorescence via spontaneous parametric down-conversion. Acta Physica Sinica, 2009, 58(7): 4689-4696. doi: 10.7498/aps.58.4689
    [11] Liu Xiao-Jing, Zhang Bo-Jun, Wang Jing, Zhang Si-Qi, Ba Nuo, Li Hong, Wu Xiang-Yao, Guo Yi-Qing. The analysis on the properties of light field distribution in one-dimensional photon crystals. Acta Physica Sinica, 2012, 61(23): 237801. doi: 10.7498/aps.61.237801
    [12] Liu Man. Study on the distribution properties of image plane speckle fields produced by Gaussian correlation weak scattering screens. Acta Physica Sinica, 2013, 62(9): 094204. doi: 10.7498/aps.62.094204
    [13] Hu Hai-Bao, Bao Lu-Yao, Huang Su-He. Simulation studies on fluid density distribution of micro-flows in a nano-channel. Acta Physica Sinica, 2013, 62(12): 124705. doi: 10.7498/aps.62.124705
    [14] Feng Jing-Hua, Meng Shi-Jian, Fu Yue-Cheng, Zhou Lin, Xu Rong-Kun, Zhang Jian-Hua, Li Lin-Bo, Zhang Fa-Qiang. Spatiotemporal distribution of hydrogenous electrode vacuum arc discharge plasma. Acta Physica Sinica, 2014, 63(14): 145205. doi: 10.7498/aps.63.145205
    [15] Tang Hua-Lian, Xu Bei-Lei, Zhuang Yi-Qi, Zhang Li, Li Cong. Distribution characteristic of p-channel metal-oxide-semiconductor negative bias temperature instability effect under process variations. Acta Physica Sinica, 2016, 65(16): 168502. doi: 10.7498/aps.65.168502
    [16] Zhao Yong-Peng, Li Lian-Bo, Cui Huai-Yu, Jiang Shan, Liu Tao, Zhang Wen-Hong, Li Wei. Intensity distribution of 69.8 nm laser pumped by capillary discharge. Acta Physica Sinica, 2016, 65(9): 095201. doi: 10.7498/aps.65.095201
    [17] Long Jian-Fei, Zhang Tian-Ping, Li Juan, Jia Yan-Hui. Optical transparency radial distribution of ion thruster. Acta Physica Sinica, 2017, 66(16): 162901. doi: 10.7498/aps.66.162901
    [18] Zhu Yong-Hao, Li Hua, Wan Wen-Jian, Zhou Tao, Cao Jun-Cheng. Far-field analysis of third-order distributed feedback terahertz quantum cascade lasers. Acta Physica Sinica, 2017, 66(9): 099501. doi: 10.7498/aps.66.099501
    [19] Xu Ji-Yao, Ma Rui-Ping, Wu Ming-Liang. The simulation study of spherics and red sprite phenomenon produced by lightning. Acta Physica Sinica, 2006, 55(10): 5007-5013. doi: 10.7498/aps.55.5007
    [20] Zhang Shi-Chang, Zhang Dong-Dong, Yan Ping, Zhang Zhe, Lu Xin, Hao Zuo-Qiang, Wang Zhao-Hua, Ma Yuan-Yuan, Zhang Jie. Laboratory simulation of femtosecond laser guided lightning discharge. Acta Physica Sinica, 2007, 56(9): 5293-5297. doi: 10.7498/aps.56.5293
  • Citation:
Metrics
  • Abstract views:  902
  • PDF Downloads:  552
  • Cited By: 0
Publishing process
  • Received Date:  04 June 2012
  • Accepted Date:  13 August 2012
  • Published Online:  20 January 2013

Distribution characteristics of lightning electromagnetic pulsed fields under the ground

  • 1. School of Electronic and Information Engineering, Harbin Institute of Technology, Harbin 150001, China

Abstract: In order to repeat the propagation and its distribution characteristics, the lightning electromagnetic field (LEMP) in the entire space is calculated by a modified finite difference time-domain (FDTD) approach in this paper. Different from issued results, in which the electromagnetic field operates only at some discrete points near the ground, the LEMP and its time derivatives, power density and energy density at each unit in the whole space under the ground are calculated and expressed as groups of pictures. We find LEMPs attenuate exponentially in the horizontal and vertical direction, in the area near the ground and far from the discharge channel. The peak values of horizontal electric field and azimuthal magnetic field each have an unaltered polarity and their contours are similar to double exponential functions in the entire space under the ground. However the peak values of vertical electric field can be divided into two opposite-polarity parts in the whole area under the ground, and the contours in the area near the strike channel are spherical in shape. The other components have similar features. We also calculate the LEMPs with different values of ground conductivity, ground permittivity, return model and base current, and the characteristics of distribution are not changed, although the values are enhanced integrally in some cases. And in the layered earth, the LEMP has similar contours inside the layers. Even in the case of striking to the lightning rod, the characteristics of distribution are not changed. These patterns and distribution characteristics of LEMP can provide support and reference in shielding design and route planning under the ground.

Reference (30)

Catalog

    /

    返回文章
    返回