Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Release melting of bismuth

Tan Ye Yu Yu-Ying Dai Cheng-Da Yu Ji-Dong Wang Qing-Song Tan Hua

Release melting of bismuth

Tan Ye, Yu Yu-Ying, Dai Cheng-Da, Yu Ji-Dong, Wang Qing-Song, Tan Hua
PDF
Get Citation
  • Reverse-impact experiments are performed on bismuth (Bi) to probe into the release melting from shock pressures in a pressure range of 11-16 GPa. A displacement interferometer system for any reflector (DISAR) is employed to measure the particle velocity history at the impact interface of LiF window with Bi flyer. The obtained experimental data, together with the results from characteristic formulations and one-dimensional hydrodynamic simulations, indicate that bismuth is converted into the body-center-cubic phase under shock loading, and then melted with the releasing of state from the initial shock (Hugoniot). The inflexion on the release wave profiles is attributed to the release melting. The proposed method and extracted results are of importance for developing the phase-change diagnostics and understanding phase-transition behavior of Bi and its analogues.
    • Funds: Project supported by the Dual Hundred Talent Project of CAEP (Grant No. ZX01115), the National Defense Basic Scientific Research Program of China (Grant No. B1520110001) and the National Natural Science Foundation of China (Grant No. 10972206).
    [1]

    Duvall G E, Graham R A 1977 Rev. Mod. Phys. 49 523

    [2]

    Bass J D, Ahrens T J, Abelson J R, Tan H 1990 J. Geophys. Res. 95 21767

    [3]

    Hu J B, Zhou X M, Tan H, Li J B, Dai C D 2008 Appl. Phys. Lett. 92 111905

    [4]

    Hu J B, Zhou X M, Dai C D, Tan H, Li J B 2008 J. Appl. Phys. 104 083520

    [5]

    Bastea M, Bastea S, Becker R 2009 Appl. Phys. Lett. 95 241911

    [6]

    Ma W, Zhu W J, Zhang Y L, Jing F Q 2011 Acta Phys. Sin. 60 066404 (in Chinese) [马文, 祝文军, 张亚林, 经福谦 2011 物理学报 60 066404]

    [7]

    Brown J M, Fritz J N, Hixson R S 2000 J. Appl. Phys. 88 5496

    [8]

    Liu X, Zhou X M, Li J, Li J B, Cao X X 2010 Acta Phys. Sin. 59 5626 (in Chinese) [刘勋, 周显明, 李俊, 李加波, 操秀霞 2010 物理学报 59 5626]

    [9]

    Tonkov E Y, Ponyatovsky E G 2005 Transformations of Elements under High Pressure (Florida: CRC PRESS) p148

    [10]

    Duff R E, Minshall S 1957 Phys. Rev. 108 1207

    [11]

    Asay J R 1974 J. Appl. Phys. 45 4441

    [12]

    Asay J R 1977 J. Appl. Phys. 48 2832

    [13]

    Johnson J N, Hayes D B, Asay J R 1974 J. Phys. Chem. Solids 35 501

    [14]

    Hayes D B 1975 J. Appl. Phys. 46 3438

    [15]

    Wetta N, Pelissier J L 2001 Physica A 289 479

    [16]

    Pelissier J L, Wetta N 2001 Physica A 289 459

    [17]

    Cox G A Shock Compression of Condensed Matter-2007 Hawai'i, America, June 24-29, 2007 p151

    [18]

    Hu J B, Zhou X M, Tan H 2008 Acta Phys. Sin. 57 2347 (in Chinese) [胡建波, 周显明, 谭华 2008 物理学报 57 2347]

    [19]

    Weng J, Tan H, Wang X, Ma Y, Hu S L, Wang X S 2006 Appl. Phys. Lett. 89 111101

    [20]

    Li X M, Yu Y Y, Li Y H, Zhang L, Ma Y, Wang X S, Fu Q W 2010 Acta Phys. Sin. 59 2691 (in Chinese) [李雪梅, 俞宇颖, 李英华, 张林, 马云, 汪小松, 付秋卫 2010 物理学报 59 2691]

    [21]

    Ma Y, Li Z R, Hu S L, Li J B, Wang X S, Chen H, Weng J D, Liu J, Yu Y Y, Song P, Xiang Y M 2007 Chinese Journal of High Pressure Physics 21 397 (in Chinese) [马云, 李泽仁, 胡绍楼, 李加波, 汪小松, 陈宏, 翁继东, 刘俊, 俞宇寅, 宋萍, 向曜民 2007 高压物理学报 21 397]

    [22]

    Tan H 2006 Introduction to Experimental Shock-Wave Physics (Beijing: National Defense Industry Press) p162 (in Chinese) [谭华 2006 实验冲击波物理导引 (北京: 国防工业出版社) 第162页]

    [23]

    Yu Y Y, Tan H, Dai C D, Hu J B, Chen D N 2005 Chin. Phys. Lett. 22(7) 1742

    [24]

    Duffy T S, Ahrens T J 1995 J. Geophys. Res. 100(B1) 529

    [25]

    Carter W J 1973 High Temp.-High Press. 5 316

    [26]

    Mabire C, Hereil P L 1999 Shock Compression of Condensed Matter-1999 Utah, America, June 27-July 2, 1999 p93

    [27]

    Resséuier T D, Hallouin M 2008 Phys. Rev. B 77 174107

  • [1]

    Duvall G E, Graham R A 1977 Rev. Mod. Phys. 49 523

    [2]

    Bass J D, Ahrens T J, Abelson J R, Tan H 1990 J. Geophys. Res. 95 21767

    [3]

    Hu J B, Zhou X M, Tan H, Li J B, Dai C D 2008 Appl. Phys. Lett. 92 111905

    [4]

    Hu J B, Zhou X M, Dai C D, Tan H, Li J B 2008 J. Appl. Phys. 104 083520

    [5]

    Bastea M, Bastea S, Becker R 2009 Appl. Phys. Lett. 95 241911

    [6]

    Ma W, Zhu W J, Zhang Y L, Jing F Q 2011 Acta Phys. Sin. 60 066404 (in Chinese) [马文, 祝文军, 张亚林, 经福谦 2011 物理学报 60 066404]

    [7]

    Brown J M, Fritz J N, Hixson R S 2000 J. Appl. Phys. 88 5496

    [8]

    Liu X, Zhou X M, Li J, Li J B, Cao X X 2010 Acta Phys. Sin. 59 5626 (in Chinese) [刘勋, 周显明, 李俊, 李加波, 操秀霞 2010 物理学报 59 5626]

    [9]

    Tonkov E Y, Ponyatovsky E G 2005 Transformations of Elements under High Pressure (Florida: CRC PRESS) p148

    [10]

    Duff R E, Minshall S 1957 Phys. Rev. 108 1207

    [11]

    Asay J R 1974 J. Appl. Phys. 45 4441

    [12]

    Asay J R 1977 J. Appl. Phys. 48 2832

    [13]

    Johnson J N, Hayes D B, Asay J R 1974 J. Phys. Chem. Solids 35 501

    [14]

    Hayes D B 1975 J. Appl. Phys. 46 3438

    [15]

    Wetta N, Pelissier J L 2001 Physica A 289 479

    [16]

    Pelissier J L, Wetta N 2001 Physica A 289 459

    [17]

    Cox G A Shock Compression of Condensed Matter-2007 Hawai'i, America, June 24-29, 2007 p151

    [18]

    Hu J B, Zhou X M, Tan H 2008 Acta Phys. Sin. 57 2347 (in Chinese) [胡建波, 周显明, 谭华 2008 物理学报 57 2347]

    [19]

    Weng J, Tan H, Wang X, Ma Y, Hu S L, Wang X S 2006 Appl. Phys. Lett. 89 111101

    [20]

    Li X M, Yu Y Y, Li Y H, Zhang L, Ma Y, Wang X S, Fu Q W 2010 Acta Phys. Sin. 59 2691 (in Chinese) [李雪梅, 俞宇颖, 李英华, 张林, 马云, 汪小松, 付秋卫 2010 物理学报 59 2691]

    [21]

    Ma Y, Li Z R, Hu S L, Li J B, Wang X S, Chen H, Weng J D, Liu J, Yu Y Y, Song P, Xiang Y M 2007 Chinese Journal of High Pressure Physics 21 397 (in Chinese) [马云, 李泽仁, 胡绍楼, 李加波, 汪小松, 陈宏, 翁继东, 刘俊, 俞宇寅, 宋萍, 向曜民 2007 高压物理学报 21 397]

    [22]

    Tan H 2006 Introduction to Experimental Shock-Wave Physics (Beijing: National Defense Industry Press) p162 (in Chinese) [谭华 2006 实验冲击波物理导引 (北京: 国防工业出版社) 第162页]

    [23]

    Yu Y Y, Tan H, Dai C D, Hu J B, Chen D N 2005 Chin. Phys. Lett. 22(7) 1742

    [24]

    Duffy T S, Ahrens T J 1995 J. Geophys. Res. 100(B1) 529

    [25]

    Carter W J 1973 High Temp.-High Press. 5 316

    [26]

    Mabire C, Hereil P L 1999 Shock Compression of Condensed Matter-1999 Utah, America, June 27-July 2, 1999 p93

    [27]

    Resséuier T D, Hallouin M 2008 Phys. Rev. B 77 174107

  • [1] Liu Xiang, Mi Wen-Bo. Structure, Magnetic and Transport Properties of Fe3O4 near Verwey Transition. Acta Physica Sinica, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [2] Algethami Obaidallah A (Yi Bi), Li Ge-Tian, Liu Zhu-Hong, Ma Xing-Qiao. Phase transformation, magnetic properties and exchange bias of Heusler alloy Mn50–xCrxNi42Sn8. Acta Physica Sinica, 2020, 69(5): 058102. doi: 10.7498/aps.69.20191551
    [3] Simulation of the nonlinear cahn-hilliard equation based onthe local refinement pure meshless method. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191829
  • Citation:
Metrics
  • Abstract views:  1740
  • PDF Downloads:  724
  • Cited By: 0
Publishing process
  • Received Date:  26 June 2012
  • Accepted Date:  28 August 2012
  • Published Online:  05 February 2013

Release melting of bismuth

  • 1. Laboratory for Shockwave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
Fund Project:  Project supported by the Dual Hundred Talent Project of CAEP (Grant No. ZX01115), the National Defense Basic Scientific Research Program of China (Grant No. B1520110001) and the National Natural Science Foundation of China (Grant No. 10972206).

Abstract: Reverse-impact experiments are performed on bismuth (Bi) to probe into the release melting from shock pressures in a pressure range of 11-16 GPa. A displacement interferometer system for any reflector (DISAR) is employed to measure the particle velocity history at the impact interface of LiF window with Bi flyer. The obtained experimental data, together with the results from characteristic formulations and one-dimensional hydrodynamic simulations, indicate that bismuth is converted into the body-center-cubic phase under shock loading, and then melted with the releasing of state from the initial shock (Hugoniot). The inflexion on the release wave profiles is attributed to the release melting. The proposed method and extracted results are of importance for developing the phase-change diagnostics and understanding phase-transition behavior of Bi and its analogues.

Reference (27)

Catalog

    /

    返回文章
    返回