Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Wireless energy transfer system based on metglas/PFC magnetoelectric laminated composites

Yu Xin-Jie Wu Tian-Yi Li Zhen

Wireless energy transfer system based on metglas/PFC magnetoelectric laminated composites

Yu Xin-Jie, Wu Tian-Yi, Li Zhen
PDF
Get Citation
  • Wireless energy transfer has broad prospective applications. Current researches focus on electromagnetic induction and magnetic resonance. The former approach is sensitive to position and the latter has larger size, both of which affect the broad application of wireless energy transfer. Two layers of magnetostrictive effect materials and one layer of piezoelectric effect material are bound by epoxy resin, which generates magnetoelectric laminated composite. It is the first time that the output voltage, current and magnetoelectric factor have been deduced without DC magnetic bias. Three samples are implemented and the wireless energy transfer system based on them is developed. The tests on the samples verify the correctness of the theoretic analysis. Further experiments illustrate that there are double frequency characteristics for the magnetoelectric laminated composites; the resonant frequency is proportional to the reciprocal of the length of the composite; the open circuit voltage of the composite could reach 100 V (rms) under a magnetic field of 20 Oe; the maximum energy transferred is 520 mW, which is the highest record reported up to now, with the energy density 1.21W/cm3 and maximum transfer efficiency 35%; the rotation less than 30° has little effect on the output of the composites. Theoretical analyses and experimental results suggest that the magnetoelectric laminated composite based on Metglas/PFC is a very interesting approach to small volume and small power wireless energy transfer applications.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50877039).
    [1]

    Dong S X, Li J F, Viehland D 2003 Appl. Phys. Lett. 83 2265

    [2]

    Nan C W, Bichurin M I, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [3]

    Wen Y M, Wang D, Li P, Chen L, Wu Z Y 2011 Acta Phys. Sin. 60 097506 (in Chinese) [文玉梅, 王东, 李平, 陈蕾, 吴治峄 2011 物理学报 60 097506]

    [4]

    Bao B H, Luo Y 2011 Acta Phys. Sin. 60 017508 (in Chinese) [鲍丙豪, 骆英 2011 物理学报 60 017508]

    [5]

    Bi K, Ai Q W, Yang L, Wu W, Wang Y G 2011 Acta Phys. Sin. 60 057503 (in Chinese) [毕科, 艾迁伟, 杨路, 吴玮, 王寅岗 2011 物理学报 60 057503]

    [6]

    Stewart W 2007 Science 317 55

    [7]

    Casanova J, Zhen N, Lin J 2009 IEEE Trans. Circ. Syst. 56 830

    [8]

    Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljacic M 2007 Science 317 83

    [9]

    O'Handley R C, Huang J K, Bono D C, Simom J 2008 IEEE Sens. J 8 57

    [10]

    Li P, Wen Y, Liu P, Li X, Jia C 2010 Sensor Actuat. A-Phys 157 100

    [11]

    Dong S X, Zhai J Y , Li J F, Viehland D 2005 Appl. Phys. Lett. 87 062502

    [12]

    Li P, Huang X, Wen Y M 2012 Acta Phys. Sin. 61 137504 (in Chinese) [李平, 黄娴, 文玉梅 2012 物理学报 61 137504]

    [13]

    Dong S X, Zhai J Y, Li J F, Viehland D 2006 Appl. Phys. Lett. 89 252904

    [14]

    Zhai J, Xing Z, Dong S, Li J, Viehland D 2008 J. Am. Ceram. Soc. 91 351

  • [1]

    Dong S X, Li J F, Viehland D 2003 Appl. Phys. Lett. 83 2265

    [2]

    Nan C W, Bichurin M I, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [3]

    Wen Y M, Wang D, Li P, Chen L, Wu Z Y 2011 Acta Phys. Sin. 60 097506 (in Chinese) [文玉梅, 王东, 李平, 陈蕾, 吴治峄 2011 物理学报 60 097506]

    [4]

    Bao B H, Luo Y 2011 Acta Phys. Sin. 60 017508 (in Chinese) [鲍丙豪, 骆英 2011 物理学报 60 017508]

    [5]

    Bi K, Ai Q W, Yang L, Wu W, Wang Y G 2011 Acta Phys. Sin. 60 057503 (in Chinese) [毕科, 艾迁伟, 杨路, 吴玮, 王寅岗 2011 物理学报 60 057503]

    [6]

    Stewart W 2007 Science 317 55

    [7]

    Casanova J, Zhen N, Lin J 2009 IEEE Trans. Circ. Syst. 56 830

    [8]

    Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljacic M 2007 Science 317 83

    [9]

    O'Handley R C, Huang J K, Bono D C, Simom J 2008 IEEE Sens. J 8 57

    [10]

    Li P, Wen Y, Liu P, Li X, Jia C 2010 Sensor Actuat. A-Phys 157 100

    [11]

    Dong S X, Zhai J Y , Li J F, Viehland D 2005 Appl. Phys. Lett. 87 062502

    [12]

    Li P, Huang X, Wen Y M 2012 Acta Phys. Sin. 61 137504 (in Chinese) [李平, 黄娴, 文玉梅 2012 物理学报 61 137504]

    [13]

    Dong S X, Zhai J Y, Li J F, Viehland D 2006 Appl. Phys. Lett. 89 252904

    [14]

    Zhai J, Xing Z, Dong S, Li J, Viehland D 2008 J. Am. Ceram. Soc. 91 351

  • [1] Zhao Jun-Fei, Zhang Ye-Wen, Li Yun-Hui, Chen Yong-Qiang, Fang Kai, He Li. Wireless power transfer system based on toroidal metamaterials. Acta Physica Sinica, 2016, 65(16): 168801. doi: 10.7498/aps.65.168801
    [2] Shi Tai-Xia, Dong Li-Juan, Chen Yong-Qiang, Liu Yan-Hong, Liu Li-Xiang, Shi Yun-Long. Regulation of spatial fields in wireless power transfer with artificial magnetic conductor. Acta Physica Sinica, 2019, 68(21): 214203. doi: 10.7498/aps.68.20190862
    [3] Wang Wei, Luo Xiao-Bin, Yang Li-Jie, Zhang Ning. Magnetocapacitance effect of magnetoelectric laminated composite at resonant frequency. Acta Physica Sinica, 2011, 60(10): 107702. doi: 10.7498/aps.60.107702
    [4] Shi Zhan, Chen Lai-Zhu, Tong Yong-Shuai, Zheng Zhi-Bin, Yang Shui-Yuan, Wang Cui-Ping, Liu Xing-Jun. Phase drift of magnetoelectric effect in Terfenol-D/PZT composite materials. Acta Physica Sinica, 2013, 62(1): 017501. doi: 10.7498/aps.62.017501
    [5] Wu Zheng, Zhou Jia-Yi, Cao Yi, Ma Ke, Jia Yan-Min, Zhang Yi-He. Electrophoresis-assisted fabrication of pseudo 1-3 ceramic/polymer piezoelectric composites. Acta Physica Sinica, 2014, 63(2): 027701. doi: 10.7498/aps.63.027701
    [6] Wan Hong, Liu Xi-Cong, Xie Li-Qiang, Wu Xue-Zhong. Magnetoelectric effect of the TbDyFe/PZT laminated composite. Acta Physica Sinica, 2005, 54(8): 3872-3877. doi: 10.7498/aps.54.3872
    [7] Ma Jing, Shi Zhan, Lin Yuan-Hua, Nan Ce-Wen. Magnetoelectric properties of multiferroic composites with pseudo 2-2 type multilayered structure. Acta Physica Sinica, 2009, 58(8): 5852-5856. doi: 10.7498/aps.58.5852
    [8] Xu Ren-Xin, Chen Wen, Zhou Jing. Effect of polymer conductance on polarization properties of 0-3 piezoelectric composite. Acta Physica Sinica, 2006, 55(8): 4292-4297. doi: 10.7498/aps.55.4292
    [9] Jiang Sheng-Lin, Yang Feng-Xia, Zhang Duan-Ming, Deng Zong-Wei, Xu Jie, Li Shu-Dan. The influence of the matrix electrical conductivity on the dc poling behaviors and the loss of 0-3 ferroelectric composites. Acta Physica Sinica, 2008, 57(6): 3840-3845. doi: 10.7498/aps.57.3840
    [10] Zhang Ning, Gao Jian-Sen. Electric field-controlled permeability and impedance in a heterotypic composite of ferroelectrics/magnet with high permeability. Acta Physica Sinica, 2009, 58(12): 8607-8611. doi: 10.7498/aps.58.8607
  • Citation:
Metrics
  • Abstract views:  1198
  • PDF Downloads:  895
  • Cited By: 0
Publishing process
  • Received Date:  08 July 2012
  • Accepted Date:  11 September 2012
  • Published Online:  05 March 2013

Wireless energy transfer system based on metglas/PFC magnetoelectric laminated composites

  • 1. State Key Lab. of Power System, Dept. of Electrical Engineering, Tsinghua University, Beijing 100084, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 50877039).

Abstract: Wireless energy transfer has broad prospective applications. Current researches focus on electromagnetic induction and magnetic resonance. The former approach is sensitive to position and the latter has larger size, both of which affect the broad application of wireless energy transfer. Two layers of magnetostrictive effect materials and one layer of piezoelectric effect material are bound by epoxy resin, which generates magnetoelectric laminated composite. It is the first time that the output voltage, current and magnetoelectric factor have been deduced without DC magnetic bias. Three samples are implemented and the wireless energy transfer system based on them is developed. The tests on the samples verify the correctness of the theoretic analysis. Further experiments illustrate that there are double frequency characteristics for the magnetoelectric laminated composites; the resonant frequency is proportional to the reciprocal of the length of the composite; the open circuit voltage of the composite could reach 100 V (rms) under a magnetic field of 20 Oe; the maximum energy transferred is 520 mW, which is the highest record reported up to now, with the energy density 1.21W/cm3 and maximum transfer efficiency 35%; the rotation less than 30° has little effect on the output of the composites. Theoretical analyses and experimental results suggest that the magnetoelectric laminated composite based on Metglas/PFC is a very interesting approach to small volume and small power wireless energy transfer applications.

Reference (14)

Catalog

    /

    返回文章
    返回