Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Potential energy surface and spectra prediction for the Mg-CO complex

Han Yu-Long Li Zhen Wang Jiang-Hong Feng Er-Yin Huang Wu-Ying

Potential energy surface and spectra prediction for the Mg-CO complex

Han Yu-Long, Li Zhen, Wang Jiang-Hong, Feng Er-Yin, Huang Wu-Ying
PDF
Get Citation
  • The interaction potential energy of Mg-CO complex was calculated by employing ab initio method in the single and double excitation coupled-cluster theory with noniterative treatment of triple excitations [CCSD (T)] and large basis sets. The potential energy surface expressed by an analytical function was obtained for the first time as far as we know. A single global minimum occurs at Re= 8.98a0 and θe= 119.09° at an energy of -72.21 cm-1, and the potential energy surface has a weak anisotropy. Based on the potential, the rovibrational energy level structure of the Mg-CO complex was investigated. The microwave transition frequencies and spectroscopic parameters for the Mg-CO complex were theoretically predicted.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10874001), and the Natural Science Foundation of Anhui Province (Grant No. 1208085MA08).
    [1]

    Wu C H, Park J W, Ahmadi P, Will S, Zwierlein M W 2012 Phys. Rev. Lett. 109 085301

    [2]

    Dulieu O, Gabbanini C 2009 Rep. Prog. Phys. 72 086401

    [3]

    Modugno G, Ferrari G, Roati G, Brecha R J, Simoni A, Inguscio M 2001 Science 294 1320

    [4]

    Tong X, Winney A H, Willitsch S 2010 Phys. Rev. Lett. 105 143001

    [5]

    Magno W C, Reinaldo L, Filho C, Cruz F C 2003 Phys. Rev. A 67 043407

    [6]

    Malossi N, Damkjær S, Hansen P L, Jacobsen L B, Kindt L, Sauge S, Thomsen J W 2005 Phys. Rev. A 72 051403

    [7]

    Mehlstäubler T E, Moldenhauer K, Riedmann M, Rehbein N, Friebe J, Rasel E M, Ertmer W 2008 Phys. Rev. A 77 021402

    [8]

    Blokland J H, Riedel J, Putzke S, Sartakov B G, Groenenboom G C, Meijer G 2011 J. Chem. Phys. 135 114201

    [9]

    Bukowski R, Sadlej J, Jeziorski B, Jankowski P, Szalewicz K, Kucharski S A, Williams H L, Rice B M 1999 J. Chem. Phys. 110 3785

    [10]

    Feng E Y, Wang Z Q, Gong M Y, Cui Z F 2007 J. Chem. Phys. 127 174301

    [11]

    Feng E Y, Sun C Y, Yu C H, Shao X, Huang W Y 2011 J. Chem. Phys. 135 124301

    [12]

    Chen R, Zhu H 2008 J. Theor. Comput. Chem. 7 1093

    [13]

    Feng E Y, Huang W Y, Cui Z F, Zhang W J 2005 J. Mol. Struct. : THEOCHEM 724 195

    [14]

    Lei J P, Xiao M Y, Zhou Y Z, Xie D Q 2012 J. Chem. Phys. 136 214307

  • [1]

    Wu C H, Park J W, Ahmadi P, Will S, Zwierlein M W 2012 Phys. Rev. Lett. 109 085301

    [2]

    Dulieu O, Gabbanini C 2009 Rep. Prog. Phys. 72 086401

    [3]

    Modugno G, Ferrari G, Roati G, Brecha R J, Simoni A, Inguscio M 2001 Science 294 1320

    [4]

    Tong X, Winney A H, Willitsch S 2010 Phys. Rev. Lett. 105 143001

    [5]

    Magno W C, Reinaldo L, Filho C, Cruz F C 2003 Phys. Rev. A 67 043407

    [6]

    Malossi N, Damkjær S, Hansen P L, Jacobsen L B, Kindt L, Sauge S, Thomsen J W 2005 Phys. Rev. A 72 051403

    [7]

    Mehlstäubler T E, Moldenhauer K, Riedmann M, Rehbein N, Friebe J, Rasel E M, Ertmer W 2008 Phys. Rev. A 77 021402

    [8]

    Blokland J H, Riedel J, Putzke S, Sartakov B G, Groenenboom G C, Meijer G 2011 J. Chem. Phys. 135 114201

    [9]

    Bukowski R, Sadlej J, Jeziorski B, Jankowski P, Szalewicz K, Kucharski S A, Williams H L, Rice B M 1999 J. Chem. Phys. 110 3785

    [10]

    Feng E Y, Wang Z Q, Gong M Y, Cui Z F 2007 J. Chem. Phys. 127 174301

    [11]

    Feng E Y, Sun C Y, Yu C H, Shao X, Huang W Y 2011 J. Chem. Phys. 135 124301

    [12]

    Chen R, Zhu H 2008 J. Theor. Comput. Chem. 7 1093

    [13]

    Feng E Y, Huang W Y, Cui Z F, Zhang W J 2005 J. Mol. Struct. : THEOCHEM 724 195

    [14]

    Lei J P, Xiao M Y, Zhou Y Z, Xie D Q 2012 J. Chem. Phys. 136 214307

  • [1] Peng Qian, Han Hui-Xian, Wang Yu-Bin, Wen Zhen-Yi. Local potential energy surface and vibration analysis for the S2O molecule. Acta Physica Sinica, 2005, 54(1): 78-84. doi: 10.7498/aps.54.78
    [2] Han Yu-Long, Zhang Kan, Feng Er-Yin, Huang Wu-Ying. Collision dynamic behaviors of CO(X1Σ+) molecule with Mg atom in cold and ultracold temperatures. Acta Physica Sinica, 2015, 64(10): 103402. doi: 10.7498/aps.64.103402
    [3] Wang Xiao-Yan, Ding Shi-Liang. Constructing potential energy surface of tetratomic molecules using Lie algebra. Acta Physica Sinica, 2004, 53(2): 423-426. doi: 10.7498/aps.53.423
    [4] Jiang Zhen-Yi, Li Sheng-Tao. First principles study of potential energy curves of NiTi alloy. Acta Physica Sinica, 2006, 55(11): 6032-6035. doi: 10.7498/aps.55.6032
    [5] Feng Er-Yin, Yu Chun-Ri, Cheng Xin-Lu, Yang Xiang-Dong. Theoretical study of the potential energy surface and differential scattering cross sections of He-HI complex. Acta Physica Sinica, 2007, 56(8): 4441-4447. doi: 10.7498/aps.56.4441
    [6] Li Xue-Chen, He Shou-Jie, Ai Xi-Cheng, Zhang Jian-Ping, Chen Qi-Dai, Wang Long. The light pulses and the spectra of conical bubbles sonoluminescence. Acta Physica Sinica, 2005, 54(2): 977-981. doi: 10.7498/aps.54.977
    [7] Yang Zhi-Hu, Zhao Yong-Tao, Yin Wei-Wei, Li Ning-Xi, Zhang Xiao-An. Precision measurement of excited spectra of oxygen ions. Acta Physica Sinica, 2006, 55(9): 4520-4527. doi: 10.7498/aps.55.4520
    [8] Zhao Hong-Ying, Dai Chang-Jian, Guan Feng. Two-step resonant photoionization spectra of Sm atom. Acta Physica Sinica, 2009, 58(1): 215-222. doi: 10.7498/aps.58.215
    [9] Li Gang, Nie Chao-Qun, Li Yu-Tong, Zhang Yi, Zhang Jie, Li Han-Ming, Li Ying-Jun, Cheng Tao. The characteristics of the spectrum emitted from dielectric barrier-discharge plasmas. Acta Physica Sinica, 2008, 57(2): 969-974. doi: 10.7498/aps.57.969
    [10] JIN JIN, CHEN YANG, PEI LIN-SEN, HU CHANG-JIN, MA XING-XIAO, CHEN CONG-XIANG. FLUORESCENCE EXCITATION SPECTRUM OF B2Σ+—X2 Σ+ OF AlO RADICAL IN A SUPERSONIC JET. Acta Physica Sinica, 2000, 49(9): 1689-1691. doi: 10.7498/aps.49.1689
  • Citation:
Metrics
  • Abstract views:  599
  • PDF Downloads:  420
  • Cited By: 0
Publishing process
  • Received Date:  24 November 2012
  • Accepted Date:  22 December 2012
  • Published Online:  05 May 2013

Potential energy surface and spectra prediction for the Mg-CO complex

  • 1. College of Physics and Electronic Information, Anhui Normal University, Wuhu 241000, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 10874001), and the Natural Science Foundation of Anhui Province (Grant No. 1208085MA08).

Abstract: The interaction potential energy of Mg-CO complex was calculated by employing ab initio method in the single and double excitation coupled-cluster theory with noniterative treatment of triple excitations [CCSD (T)] and large basis sets. The potential energy surface expressed by an analytical function was obtained for the first time as far as we know. A single global minimum occurs at Re= 8.98a0 and θe= 119.09° at an energy of -72.21 cm-1, and the potential energy surface has a weak anisotropy. Based on the potential, the rovibrational energy level structure of the Mg-CO complex was investigated. The microwave transition frequencies and spectroscopic parameters for the Mg-CO complex were theoretically predicted.

Reference (14)

Catalog

    /

    返回文章
    返回