Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulational study on streamer discharge in transformer oil under positive nanosecond pulse voltage

Li Yuan Mu Hai-Bao Deng Jun-Bo Zhang Guan-Jun Wang Shu-Hong

Simulational study on streamer discharge in transformer oil under positive nanosecond pulse voltage

Li Yuan, Mu Hai-Bao, Deng Jun-Bo, Zhang Guan-Jun, Wang Shu-Hong
PDF
Get Citation
  • In this paper, we investigate the streamer discharge process in transformer oil under positive nanosecond pulse voltage through developing a two-dimensional axially symmetric fluid model and simulating the physics of discharge inception and propagation. The streamer discharge profile and distributions of electric field and space charge density are obtained under different conditions such as the amplitude of applied voltage, rise time and gap distance. Simulation results show that space charges enhance the front field of streamer head, which is conducive to the longer propagation of discharge channel, therefore "ionization wave" is formed. The magnitude and rise time of applied voltage have evident influences on the average speed of streamer propagation. It can be observed that the higher the applied impulse voltage, the faster the streamer propagates, and the steeper the rise time of applied impulse, when streamer arrives at the same position, the larger the discharging radius will be and the smaller maximal electric field will be. The cases of different gap distances indicate that longer gap distance corresponds to a faster average speed of streamer. It is considered that field-dependent molecular ionization predominates the charge generation mechanism of streamer discharge process in transformer oil, and space charge effect contributes to further developing ionization until the whole gap eventually breakdowns. The study is dedicated to the better understanding of the process from inception to breakdown of discharging in transformer oil, as well as ionization mechanism in liquid dielectric.
    • Funds: Project supported by the National Natural Science Fund for Distinguished Young Scholars of China (Grant No. 51125029).
    [1]

    Wang Y 1991 High Power Pulsed Power Supply (Beijing: Atomic Energy Press) pp5-11 (in Chinese) [王莹 1991 高功率脉冲电源(北京: 原子能出版社)第5–11页]

    [2]

    Zhou Y X, Sha Y C, Nie D X, Wu Z R, Deng J G, Lu L C 2012 High Voltage Engineering 38 1163 (in Chinese) [周远翔, 沙彦超, 聂德鑫, 伍志荣, 邓建刚, 卢理成 2012 高电压技术 38 1163]

    [3]

    Wang W R, He D H 1985 High Voltage Engineering 4 24 (in Chinese) [王文瑞, 何大海 1985 高电压技术 4 24]

    [4]

    Wang Y, Shao T, Yan P, Huang W L, Zhang S C, Sun G S 2005 High Voltage Apparatus 41 1 (in Chinese) [王钰, 邵涛, 严萍, 黄文力, 张适昌, 孙广生 2005 高压电器 41 1]

    [5]

    Lehr J M, Agee F J, Copeland R, Prather W D 1998 IEEE Trans. Dielectr. Insul. 5 857

    [6]

    Huang L W, Sun G S, Wang Y, Yan P 2005 High Voltage Apparatus 41 131 (in Chinese) [黄文力, 孙广生, 王钰, 严萍 2005 高压电器 41 131]

    [7]

    Zhang J Q, Jiang X L, Chen Z G 2006 High Power Laser and Particle Beams 18 1053 (in Chinese) [张晋琪, 蒋兴良, 陈志刚 2006 强激光与离子束 18 1053]

    [8]

    Zhang C, Shao T, Niu Z, Zhang D D, Wang Y, Yan P 2012 Acta Phys. Sin. 61 035202 (in Chinese) [张程, 邵涛, 牛铮, 张东东, 王钰, 严萍 2012 物理学报 61 035202]

    [9]

    Zhang Y H, Ma Q S, Xiang F, Gan Y Q, Chang A B, Liu Z, Zhou C M 2005 Acta Phys. Sin. 54 3111 (in Chinese) [张永辉, 马乔生, 向飞, 甘延青, 常安碧, 刘忠, 周传明 2005 物理学报 54 3111]

    [10]

    L X G, Ren C S, Ma T C, Zhu H L, Qian M Y, Wang D Z 2010 Acta Phys. Sin. 59 7917 (in Chinese) [吕晓桂, 任春生, 马腾才, 朱海龙, 钱沐扬, 王德真 2010 物理学报 59 7917]

    [11]

    IEC Standard #60897 (1987) Methods for the Determination of Lightning Impulse Breakdown Voltage of Insulating Liquid.

    [12]

    Tran T N, Golosnoy I O, Lewin P L, Georghiou G E 2010 J. Phys. D: Appl. Phys. 44 015203

    [13]

    Morrow R, Lowke J J 1997 J. Phys. D: Appl. Phys. 30 614

    [14]

    Shao X J, Ma Y, Li Y X, Zhang G J 2010 Acta Phys. Sin. 59 8747 (in Chinese) [邵先军, 马跃, 李娅西, 张冠军 2010 物理学报 59 8747]

    [15]

    Jadidian J, Zahn M 2011 Conference Proceedings of International Symposium on Electrical Insulating Materials 2011 Tokyo, September 6-11, 1999 p506

    [16]

    Qian J, Joshi R P, Schamiloglu E, Gaudet J, Woodworth J, Lehr J 2006 J. Phys. 39 359

    [17]

    Lesaint O, Massala G 1998 IEEE Trans. Dielectr. Insul. 5 360

    [18]

    Lundgaard L, Linhjell D, Berg G, Sigmond S 1998 IEEE Trans. Dielectr. Insul. 5 388

    [19]

    Kulikovsky A A 1997 J. Phys. D: Appl. Phys. 30 441

    [20]

    Harada M, Ohga Y, Watanabe I, Watarai H 1999 Chem. Phys. Lett. 303 489

    [21]

    Smalo H S, Hestad o, Ingebrigtsen S, Åstrand P 2011 J. Appl. Phys. 109 073306

    [22]

    Tobazéon R 1994 IEEE Trans. Dielec. Electr. Insul. 1 1132

    [23]

    Wang X X, Lu M Z, Pu Y K 2002 Acta Phys. Sin. 51 2778 (in Chinese) [王新新, 芦明泽, 蒲以康 2002 物理学报 51 2778]

    [24]

    Shao T, Sun G S, Yan P, Gu C, Zhang S C 2006 Acta Phys. Sin. 55 5964 (in Chinese) [邵涛, 孙广生, 严萍, 谷琛, 张适昌 2006 物理学报 55 5964]

    [25]

    Halpern B, Gomer R 1969 J. Chem. Phys. 51 1048

    [26]

    Béroual A, Tobazéon R 1986 IEEE Trans. Dielec. Electr. Insul. E1-21 613

    [27]

    Tobazéon R, Filippini J C, Marteau C 1994 IEEE Trans. Dielec. Electr. Insul. 1 1000

    [28]

    Zener C 1934 Proc. R. Soc. London A 145 523

    [29]

    Jadidian J, Zahn M, Lavesson N, Widlund O, Borg K 2012 IEEE Trans. Plasma Sci. 40 909

    [30]

    Zhang Z H, Shao X J, Zhang G J, Li Y X, Peng Z Y 2012 Acta Phys. Sin. 61 045205 (in Chinese) [张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕 2012 物理学报 61 045205]

    [31]

    Chen Y H, Fan B C, Chen Z H, Zhou B M 2008 Acta Phys. Sin. 57 064806 (in Chinese) [陈耀慧, 范宝春, 陈志华, 周本谋 2008 物理学报 57 064806]

    [32]

    Devins J C, Rzad S J, Schwabe R J 1981 J. Phys. D: Appl. Phys. 52 4531

    [33]

    Lesaint O, Tobazéon R 1988 IEEE Trans. Dielectr. Insul. 23 941

  • [1]

    Wang Y 1991 High Power Pulsed Power Supply (Beijing: Atomic Energy Press) pp5-11 (in Chinese) [王莹 1991 高功率脉冲电源(北京: 原子能出版社)第5–11页]

    [2]

    Zhou Y X, Sha Y C, Nie D X, Wu Z R, Deng J G, Lu L C 2012 High Voltage Engineering 38 1163 (in Chinese) [周远翔, 沙彦超, 聂德鑫, 伍志荣, 邓建刚, 卢理成 2012 高电压技术 38 1163]

    [3]

    Wang W R, He D H 1985 High Voltage Engineering 4 24 (in Chinese) [王文瑞, 何大海 1985 高电压技术 4 24]

    [4]

    Wang Y, Shao T, Yan P, Huang W L, Zhang S C, Sun G S 2005 High Voltage Apparatus 41 1 (in Chinese) [王钰, 邵涛, 严萍, 黄文力, 张适昌, 孙广生 2005 高压电器 41 1]

    [5]

    Lehr J M, Agee F J, Copeland R, Prather W D 1998 IEEE Trans. Dielectr. Insul. 5 857

    [6]

    Huang L W, Sun G S, Wang Y, Yan P 2005 High Voltage Apparatus 41 131 (in Chinese) [黄文力, 孙广生, 王钰, 严萍 2005 高压电器 41 131]

    [7]

    Zhang J Q, Jiang X L, Chen Z G 2006 High Power Laser and Particle Beams 18 1053 (in Chinese) [张晋琪, 蒋兴良, 陈志刚 2006 强激光与离子束 18 1053]

    [8]

    Zhang C, Shao T, Niu Z, Zhang D D, Wang Y, Yan P 2012 Acta Phys. Sin. 61 035202 (in Chinese) [张程, 邵涛, 牛铮, 张东东, 王钰, 严萍 2012 物理学报 61 035202]

    [9]

    Zhang Y H, Ma Q S, Xiang F, Gan Y Q, Chang A B, Liu Z, Zhou C M 2005 Acta Phys. Sin. 54 3111 (in Chinese) [张永辉, 马乔生, 向飞, 甘延青, 常安碧, 刘忠, 周传明 2005 物理学报 54 3111]

    [10]

    L X G, Ren C S, Ma T C, Zhu H L, Qian M Y, Wang D Z 2010 Acta Phys. Sin. 59 7917 (in Chinese) [吕晓桂, 任春生, 马腾才, 朱海龙, 钱沐扬, 王德真 2010 物理学报 59 7917]

    [11]

    IEC Standard #60897 (1987) Methods for the Determination of Lightning Impulse Breakdown Voltage of Insulating Liquid.

    [12]

    Tran T N, Golosnoy I O, Lewin P L, Georghiou G E 2010 J. Phys. D: Appl. Phys. 44 015203

    [13]

    Morrow R, Lowke J J 1997 J. Phys. D: Appl. Phys. 30 614

    [14]

    Shao X J, Ma Y, Li Y X, Zhang G J 2010 Acta Phys. Sin. 59 8747 (in Chinese) [邵先军, 马跃, 李娅西, 张冠军 2010 物理学报 59 8747]

    [15]

    Jadidian J, Zahn M 2011 Conference Proceedings of International Symposium on Electrical Insulating Materials 2011 Tokyo, September 6-11, 1999 p506

    [16]

    Qian J, Joshi R P, Schamiloglu E, Gaudet J, Woodworth J, Lehr J 2006 J. Phys. 39 359

    [17]

    Lesaint O, Massala G 1998 IEEE Trans. Dielectr. Insul. 5 360

    [18]

    Lundgaard L, Linhjell D, Berg G, Sigmond S 1998 IEEE Trans. Dielectr. Insul. 5 388

    [19]

    Kulikovsky A A 1997 J. Phys. D: Appl. Phys. 30 441

    [20]

    Harada M, Ohga Y, Watanabe I, Watarai H 1999 Chem. Phys. Lett. 303 489

    [21]

    Smalo H S, Hestad o, Ingebrigtsen S, Åstrand P 2011 J. Appl. Phys. 109 073306

    [22]

    Tobazéon R 1994 IEEE Trans. Dielec. Electr. Insul. 1 1132

    [23]

    Wang X X, Lu M Z, Pu Y K 2002 Acta Phys. Sin. 51 2778 (in Chinese) [王新新, 芦明泽, 蒲以康 2002 物理学报 51 2778]

    [24]

    Shao T, Sun G S, Yan P, Gu C, Zhang S C 2006 Acta Phys. Sin. 55 5964 (in Chinese) [邵涛, 孙广生, 严萍, 谷琛, 张适昌 2006 物理学报 55 5964]

    [25]

    Halpern B, Gomer R 1969 J. Chem. Phys. 51 1048

    [26]

    Béroual A, Tobazéon R 1986 IEEE Trans. Dielec. Electr. Insul. E1-21 613

    [27]

    Tobazéon R, Filippini J C, Marteau C 1994 IEEE Trans. Dielec. Electr. Insul. 1 1000

    [28]

    Zener C 1934 Proc. R. Soc. London A 145 523

    [29]

    Jadidian J, Zahn M, Lavesson N, Widlund O, Borg K 2012 IEEE Trans. Plasma Sci. 40 909

    [30]

    Zhang Z H, Shao X J, Zhang G J, Li Y X, Peng Z Y 2012 Acta Phys. Sin. 61 045205 (in Chinese) [张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕 2012 物理学报 61 045205]

    [31]

    Chen Y H, Fan B C, Chen Z H, Zhou B M 2008 Acta Phys. Sin. 57 064806 (in Chinese) [陈耀慧, 范宝春, 陈志华, 周本谋 2008 物理学报 57 064806]

    [32]

    Devins J C, Rzad S J, Schwabe R J 1981 J. Phys. D: Appl. Phys. 52 4531

    [33]

    Lesaint O, Tobazéon R 1988 IEEE Trans. Dielectr. Insul. 23 941

  • [1] Zhou Li-Na, Wang Xin-Bing. A fluid model for the simulation of discharges in microhollow cathode. Acta Physica Sinica, 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
    [2] Zuo Ying-Hong, Wang Jian-Guo, Fan Ru-Yu. Influence of space charge effect on Nottingham effect in thermal field emission. Acta Physica Sinica, 2013, 62(24): 247901. doi: 10.7498/aps.62.247901
    [3] Li Han-Wei, Sun An-Bang, Zhang Xing, Yao Cong-Wei, Chang Zheng-Shi, Zhang Guan-Jun. Three-dimensional PIC/MCC numerical study on the initial process of streamer discharge in a needle-plate electrode in atmospheric air. Acta Physica Sinica, 2018, 67(4): 045101. doi: 10.7498/aps.67.20172309
    [4] Peng Kai, Liu Da-Gang. Numerical simulation and study of three-dimensional thermal field emission. Acta Physica Sinica, 2012, 61(12): 121301. doi: 10.7498/aps.61.121301
    [5] Zuo Ying-Hong, Wang Jian-Guo, Fan Ru-Yu. Influence of diode gap distance on space charge effects in field emission. Acta Physica Sinica, 2012, 61(21): 215202. doi: 10.7498/aps.61.215202
    [6] Zhang Ling-Zi, Zuo Yu-Hua, Cao Quan, Xue Chun-Lai, Cheng Bu-Wen, Zhang Wan-Chang, Cao Xue-Lei, Wang Qi-Ming. High-speed and high-power uni-traveling-carrier photodetector. Acta Physica Sinica, 2012, 61(13): 138501. doi: 10.7498/aps.61.138501
    [7] Tu Jing-Yi, Chen She, Wang Feng. Influence of photoionization rates on positive streamer branching in atmospheric air. Acta Physica Sinica, 2019, 68(9): 095202. doi: 10.7498/aps.68.20190060
    [8] Yuan Yong-Teng, Hao Yi-Dan, Zhao Zong-Qing, Hou Li-Fei, Miao Wen-Yong. Dynamic range of X-ray streak camera affected by space charge effect. Acta Physica Sinica, 2010, 59(10): 6963-6968. doi: 10.7498/aps.59.6963
    [9] Shao Xian-Jun, Ma Yue, Li Ya-Xi, Zhang Guan-Jun. One-dimensional simulation of low pressure xenon dielectric barrier discharge. Acta Physica Sinica, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [10] He Shou-Jie, Zhang Zhao, Zhao Xue-Na, Li Qing. Spatio-temporal characteristics of microhollow cathode sustained discharge. Acta Physica Sinica, 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [11] He Shou-Jie, Zhou Jia, Qu Yu-Xiao, Zhang Bao-Ming, Zhang Ya, Li Qing. Simulation on complex dynamics of hollow cathode discharge in argon. Acta Physica Sinica, 2019, 68(21): 215101. doi: 10.7498/aps.68.20190734
    [12] Zhang Zeng-Hui, Shao Xian-Jun, Zhang Guan-Jun, Li Ya-Xi, Peng Zhao-Yu. One-dimensional simulation of dielectric barrier glow discharge in atmospheric pressure Ar. Acta Physica Sinica, 2012, 61(4): 045205. doi: 10.7498/aps.61.045205
    [13] Zhang Zeng-Hui, Zhang Guan-Jun, Shao Xian-Jun, Chang Zheng-Shi, Peng Zhao-Yu, Xu Hao. Modelling study of dielectric barrier glow discharge in Ar/NH3 mixture at atmospheric pressure. Acta Physica Sinica, 2012, 61(24): 245205. doi: 10.7498/aps.61.245205
    [14] Yao Cong-Wei, Ma Heng-Chi, Chang Zheng-Shi, Li Ping, Mu Hai-Bao, Zhang Guan-Jun. Simulations of the cathode falling characteristics and its influence factors in atmospheric pressure dielectric barrier glow discharge pulse. Acta Physica Sinica, 2017, 66(2): 025203. doi: 10.7498/aps.66.025203
    [15] Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie. Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure. Acta Physica Sinica, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [16] Zhu Yu, Zhu Guo-Qiang, Xia Guang-Qing, Xue Wei-Hua, Chen Mao-Lin. Numerical simulation study on characteristic parameters of microcavity discharge in argon. Acta Physica Sinica, 2011, 60(1): 015201. doi: 10.7498/aps.60.015201
    [17] Dong Ye, Dong Zhi-Wei, Zhou Qian-Hong, Yang Wen-Yuan, Zhou Hai-Jing. Ionization parameters of high power microwave flashover on dielectric window surface calculated by particle-in-cell simulation for fluid modeling. Acta Physica Sinica, 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [18] Zhao Peng-Cheng, Liao Cheng, Yang Dang, Zhong Xuan-Ming, Lin Wen-Bin. High power microwave breakdown in gas using the fluid model with non-equilibrium electron energy distribution function. Acta Physica Sinica, 2013, 62(5): 055101. doi: 10.7498/aps.62.055101
    [19] Liu Zhen-Bang, Jin Xiao, Huang Hua, Chen Huai-Bi, Wang Gan-Ping. Preliminary study of the characteristic of multi-beam in intense multi-beam relativistic klystron. Acta Physica Sinica, 2012, 61(24): 248401. doi: 10.7498/aps.61.248401
    [20] Liu Fu-Cheng, Yan Wen, Wang De-Zhen. Two-dimensional simulation of atmospheric pressure cold plasma jets in a needle-plane electrode configuration. Acta Physica Sinica, 2013, 62(17): 175204. doi: 10.7498/aps.62.175204
  • Citation:
Metrics
  • Abstract views:  944
  • PDF Downloads:  1228
  • Cited By: 0
Publishing process
  • Received Date:  02 December 2012
  • Accepted Date:  04 March 2013
  • Published Online:  20 June 2013

Simulational study on streamer discharge in transformer oil under positive nanosecond pulse voltage

  • 1. State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Egineering, Xi’an Jiaotong University, Xi’an 710049, China
Fund Project:  Project supported by the National Natural Science Fund for Distinguished Young Scholars of China (Grant No. 51125029).

Abstract: In this paper, we investigate the streamer discharge process in transformer oil under positive nanosecond pulse voltage through developing a two-dimensional axially symmetric fluid model and simulating the physics of discharge inception and propagation. The streamer discharge profile and distributions of electric field and space charge density are obtained under different conditions such as the amplitude of applied voltage, rise time and gap distance. Simulation results show that space charges enhance the front field of streamer head, which is conducive to the longer propagation of discharge channel, therefore "ionization wave" is formed. The magnitude and rise time of applied voltage have evident influences on the average speed of streamer propagation. It can be observed that the higher the applied impulse voltage, the faster the streamer propagates, and the steeper the rise time of applied impulse, when streamer arrives at the same position, the larger the discharging radius will be and the smaller maximal electric field will be. The cases of different gap distances indicate that longer gap distance corresponds to a faster average speed of streamer. It is considered that field-dependent molecular ionization predominates the charge generation mechanism of streamer discharge process in transformer oil, and space charge effect contributes to further developing ionization until the whole gap eventually breakdowns. The study is dedicated to the better understanding of the process from inception to breakdown of discharging in transformer oil, as well as ionization mechanism in liquid dielectric.

Reference (33)

Catalog

    /

    返回文章
    返回