Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electron-LO phonon scattering in Ga1-xInxNyAs1-y/GaAs quantum well

Chen Qian Wang Hai-Long Wang Hui Gong Qian Song Zhi-Tang

Electron-LO phonon scattering in Ga1-xInxNyAs1-y/GaAs quantum well

Chen Qian, Wang Hai-Long, Wang Hui, Gong Qian, Song Zhi-Tang
PDF
Get Citation
  • Within the framework of effective mass approximation, the values of energy eigenvalue En in Ga1-xInxNyAs1-y/GaAs quantum well are theoretically calculated using shooting method. In addition, we calculate the electron-LO phonon scattering and mean scattering rate at different temperatures, well width, N concentrations and In concentrations for an electron initially in the second subband and finally in the ground state using Fermi’s golden rule. It is shown that the electron-LO phonon scattering and mean scattering rate increase with the increase of N concentration under the In concentration constant. The electron-LO phonon scattering and mean scattering rate decrease with the increase of In concentration under the In concentration constant. The electron-LO phonon scattering increases monotonically with the increase of temperature. When the temperature is relatively low, the variation of mean scattering rate is not obvious with the increase of temperature When the temperature is relatively high, mean scattering rate increases with the increase of temperature. The scattering and mean scattering rate increase up to their maxima and then begin to decrease as the well width increases. The maximum value is reached when the well width is about 200 Å. Our calculated results are meaningful and can be used for designing the optoelectronic devices based on Ga1-xInxNyAs1-y/GaAs quantum well.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60976015, 61176065), the Natural Science Foundation of Shandong (Grant No. ZR2010FM023), and the Open Project of State Key Laboratory of Functional Materials for Informatics, China.
    [1]

    Lin G J, Lai H K, Li C, Chen S Y, Yu J Z 2008 Chin. Phys. B 17 3479

    [2]

    Wu Y F, Liang X X, Baja K K 2005 Chin. Phys. B 14 2314

    [3]

    Zheng Y J, Ji Z W, Xu X G 2011 Acta Phys. Sin. 60 047805 (in Chinese) [郑雨军, 冀子武, 徐现刚 2011 物理学报 60 047805]

    [4]

    Wang H L, Jiang L M, Gong Q, Feng S L 2010 Physica B 405 3818

    [5]

    Kondow M, UomiK, Niwa A, Watahiki S, Yazawa Y 1996 Jpn. J. Appl. Phys. 35 1273

    [6]

    Spuhler G J, Krainer L, Liverini V, Grange R, Haiml M, Pawlik S, Schmidt B, Schön S, Keller U 2005 Phot. Technol. Lett. 17 1319

    [7]

    Rutz A, Liverini V, Maas D J H C, Rudin B, Bellancourt A R, Schön S, Keller U 2006 Elec. Lett. 42 926

    [8]

    Zhan L, Chan K S, Pun E Y B, Ho H P 2003 Opt. Commun. 228 167

    [9]

    Kondow M, Nakatsuka S, Kitatani T, Yazawa Y, Okai M 1996 Jpn. J. Appl. Phys. 35 5711

    [10]

    Kondow M, Kitatani T 2002 Semicod. Sci. Technol. 17 746

    [11]

    Zhang S Y, Niu Z C, Ni H Q, Wu D H, He Z H, Sun Z, Han Q, Wu R H 2005 Appl. Phys. Lett. 87 161911

    [12]

    Niu Z C, Zhang S Y, Ni H Q, Han Q, Yang X H, Wu D H, Zhao H, Peng H L, Xu Y Q, Du Y, Li S Y, He Z H, Ren Z W, Zhou Z Q, Xiong Y H, Wang H L, Wu R H 2005 Appl. Phys. Lett. 87 231121

    [13]

    Niu Z C, Ni H Q, Xu X H, Zhang W, Xu Y Q, Wu R H 2003 Phys. Rev. B 68 235326

    [14]

    Sawaki N 1986 J. Phys. C: Solid State Phys. 19 4965

    [15]

    Weber G, Paula A M D, Ryan J F 1991 Semicod. Sci. Technol. 6 397

    [16]

    Xie W F, Zhu W 2012 Commun. Theor. Phys. 38 375

    [17]

    Yang F J, Ban S L 2012 Acta Phys. Sin. 61 087201 (in Chinese) [杨福军, 班士良 2012 物理学报 61 087201]

    [18]

    Xia Z L, Fang Z X, Shao J D 2006 Acta Phys. Sin. 55 3007 (in Chinese) [夏志林, 范正修, 邵建达 2006 物理学报 55 3007]

    [19]

    Murdin B N, Hollingworth A R, Kamal-Saadi M, Kotitschke R T 1999 Phys. Rev. B 59 R7817

    [20]

    Wetzel C, Walukiewicz W, Ager Ⅲ J W 1997 Proc. Mat. Res. Soc. Symp. 449 567

    [21]

    Zheng Y S, Lu T Q 1997 Semicond. Sci. Technol. 12 296

    [22]

    Blom P W M, Haverkort J E M, Hail P J, Wolter J H 1993 Appl. Phys. Lett. 62 1490

    [23]

    Rudin S 1990 Phys. Rev. B 41 7713

    [24]

    Potter R J, Balkan N 2004 J. Phys.: Condens. Matter 16 S3387

  • [1]

    Lin G J, Lai H K, Li C, Chen S Y, Yu J Z 2008 Chin. Phys. B 17 3479

    [2]

    Wu Y F, Liang X X, Baja K K 2005 Chin. Phys. B 14 2314

    [3]

    Zheng Y J, Ji Z W, Xu X G 2011 Acta Phys. Sin. 60 047805 (in Chinese) [郑雨军, 冀子武, 徐现刚 2011 物理学报 60 047805]

    [4]

    Wang H L, Jiang L M, Gong Q, Feng S L 2010 Physica B 405 3818

    [5]

    Kondow M, UomiK, Niwa A, Watahiki S, Yazawa Y 1996 Jpn. J. Appl. Phys. 35 1273

    [6]

    Spuhler G J, Krainer L, Liverini V, Grange R, Haiml M, Pawlik S, Schmidt B, Schön S, Keller U 2005 Phot. Technol. Lett. 17 1319

    [7]

    Rutz A, Liverini V, Maas D J H C, Rudin B, Bellancourt A R, Schön S, Keller U 2006 Elec. Lett. 42 926

    [8]

    Zhan L, Chan K S, Pun E Y B, Ho H P 2003 Opt. Commun. 228 167

    [9]

    Kondow M, Nakatsuka S, Kitatani T, Yazawa Y, Okai M 1996 Jpn. J. Appl. Phys. 35 5711

    [10]

    Kondow M, Kitatani T 2002 Semicod. Sci. Technol. 17 746

    [11]

    Zhang S Y, Niu Z C, Ni H Q, Wu D H, He Z H, Sun Z, Han Q, Wu R H 2005 Appl. Phys. Lett. 87 161911

    [12]

    Niu Z C, Zhang S Y, Ni H Q, Han Q, Yang X H, Wu D H, Zhao H, Peng H L, Xu Y Q, Du Y, Li S Y, He Z H, Ren Z W, Zhou Z Q, Xiong Y H, Wang H L, Wu R H 2005 Appl. Phys. Lett. 87 231121

    [13]

    Niu Z C, Ni H Q, Xu X H, Zhang W, Xu Y Q, Wu R H 2003 Phys. Rev. B 68 235326

    [14]

    Sawaki N 1986 J. Phys. C: Solid State Phys. 19 4965

    [15]

    Weber G, Paula A M D, Ryan J F 1991 Semicod. Sci. Technol. 6 397

    [16]

    Xie W F, Zhu W 2012 Commun. Theor. Phys. 38 375

    [17]

    Yang F J, Ban S L 2012 Acta Phys. Sin. 61 087201 (in Chinese) [杨福军, 班士良 2012 物理学报 61 087201]

    [18]

    Xia Z L, Fang Z X, Shao J D 2006 Acta Phys. Sin. 55 3007 (in Chinese) [夏志林, 范正修, 邵建达 2006 物理学报 55 3007]

    [19]

    Murdin B N, Hollingworth A R, Kamal-Saadi M, Kotitschke R T 1999 Phys. Rev. B 59 R7817

    [20]

    Wetzel C, Walukiewicz W, Ager Ⅲ J W 1997 Proc. Mat. Res. Soc. Symp. 449 567

    [21]

    Zheng Y S, Lu T Q 1997 Semicond. Sci. Technol. 12 296

    [22]

    Blom P W M, Haverkort J E M, Hail P J, Wolter J H 1993 Appl. Phys. Lett. 62 1490

    [23]

    Rudin S 1990 Phys. Rev. B 41 7713

    [24]

    Potter R J, Balkan N 2004 J. Phys.: Condens. Matter 16 S3387

  • [1] The physics-based model of AlGaN/GaN high electron mobility transistor outer fringing capacitances. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191931
    [2] Dong Zheng-Qiong, Zhao Hang, Zhu Jin-Long, Shi Ya-Ting. Influence of incident illumination on optical scattering measurement of typical photoresist nanostructure. Acta Physica Sinica, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [3] Wu Mei-Mei, Zhang Chao, Zhang Can, Sun Qian-Qian, Liu Mei. Surface enhanced Raman scattering characteristics of three-dimensional pyramid stereo composite substrate. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [4] Wang Jing-Li, Chen Zi-Yu, Chen He-Ming. Design of polarization-insensitive 1 × 2 multimode interference demultiplexer based on Si3N4/SiNx/Si3N4 sandwiched structure. Acta Physica Sinica, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [5] Current Phases in Hofstadter Ladder with Staggered Hopping. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191964
    [6] Measurement of Magnetically Insensitive State Coherent Time in Blue Dipole Trap. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20192001
    [7] Huang Yong-Feng, Cao Huai-Xin, Wang Wen-Hua. Conjugate linear symmetry and its application to \begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-symmetry quantum theory. Acta Physica Sinica, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
  • Citation:
Metrics
  • Abstract views:  1020
  • PDF Downloads:  320
  • Cited By: 0
Publishing process
  • Received Date:  09 August 2013
  • Accepted Date:  19 August 2013
  • Published Online:  20 November 2013

Electron-LO phonon scattering in Ga1-xInxNyAs1-y/GaAs quantum well

  • 1. Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165, China;
  • 2. Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China;
  • 3. State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 60976015, 61176065), the Natural Science Foundation of Shandong (Grant No. ZR2010FM023), and the Open Project of State Key Laboratory of Functional Materials for Informatics, China.

Abstract: Within the framework of effective mass approximation, the values of energy eigenvalue En in Ga1-xInxNyAs1-y/GaAs quantum well are theoretically calculated using shooting method. In addition, we calculate the electron-LO phonon scattering and mean scattering rate at different temperatures, well width, N concentrations and In concentrations for an electron initially in the second subband and finally in the ground state using Fermi’s golden rule. It is shown that the electron-LO phonon scattering and mean scattering rate increase with the increase of N concentration under the In concentration constant. The electron-LO phonon scattering and mean scattering rate decrease with the increase of In concentration under the In concentration constant. The electron-LO phonon scattering increases monotonically with the increase of temperature. When the temperature is relatively low, the variation of mean scattering rate is not obvious with the increase of temperature When the temperature is relatively high, mean scattering rate increases with the increase of temperature. The scattering and mean scattering rate increase up to their maxima and then begin to decrease as the well width increases. The maximum value is reached when the well width is about 200 Å. Our calculated results are meaningful and can be used for designing the optoelectronic devices based on Ga1-xInxNyAs1-y/GaAs quantum well.

Reference (24)

Catalog

    /

    返回文章
    返回