Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First principle study on B-Al co-doped 3C-SiC

Zhou Peng-Li Shi Ru-Qian He Jing-Fang Zheng Shu-Kai

First principle study on B-Al co-doped 3C-SiC

Zhou Peng-Li, Shi Ru-Qian, He Jing-Fang, Zheng Shu-Kai
PDF
Get Citation
  • The lattice parameters, band structure, density of states, effective mass, carrier concentration and electrical resistivity of 3C-SiC in different doped forms (undoped, B-doped, Al-doped and B-Al co-doped) are calculated using the plane wave ultrasoft pseudopotential based on density functional theory. Calculations indicate that as the B or Al replaces Si atoms, both the conduction band and valence band shift to higher energy level. The top of valence band shifts quicker, resulting in the decrease of the band gap. B-Al co-doped 3C-SiC shows the narrowest bandgap while the pure one has the widest. Effective mass of B-doped 3C-SiC decreases but that of Al-doped 3C-SiC increases; while B-Al co-doped 3C-SiC effective mass, whose value approaches to the undoped, can be understood in terms of different compensation. As the acceptor impurities, B and Al will greatly increase the carrier density of valence band top, and the carrier density of the co-doped is three times as Large as the B-doped or Al-doped 3C-SiC. In addition, B-Al co-doping has the lowest resistivity among the four doping forms displaying its significant advantages in electrical property.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61204079, 61306098).
    [1]

    Deng X C, Sun H, Rao C Y, Zhang B 2013 Chin. Phys. B 22 017302

    [2]

    Song Q W, Zhang Y M, Han J, Tanner S P, Dimitrijev S, Zhang Y M, Tang X Y, Guo H 2013 Chin. Phys. B 22 027302

    [3]

    Liu L, Yang Y T, Ma X H 2011 Chin. Phys. B 20 127204

    [4]

    Zheng L, Zhang F, Liu S B, Dong L, Liu X F, Fan Z C, Liu B, Yan G G, Wang L, Zhao W S, Sun G S, He Z, Yang F H 2013 Chin. Phys. B 22 097302

    [5]

    Li X Y 2013 Electronic Products 01 23 (in Chinese) [李晓延 2013 今日电子 01 23]

    [6]

    Kim K J, Lim K Y, Kim Y W, Kim H C 2013 J. Am. Ceram. Soc. 96 2525

    [7]

    Wang H, Yan C F, Kong H K, Chen J J, Xin J, Shi E W 2013 Chin. Phys. B 22 027505

    [8]

    Zheng H W, Wang Z Q, Liu X Y, Diao C L, Zhang H R, Gu Y Z 2011 Appl. Phys. Lett. 99 222512

    [9]

    Zhou J, Li H, Zhang L, Cheng J, Zhao H, Chu W, Yang J, Luo Y, Wu Z 2011 J. Phys. Chem. C 115 253

    [10]

    Wang Y Y, Shen H J, Bai Y, Tang Y D, Liu K A, Li C Z, Liu X Y 2013 Chin. Phys. B 22 078102

    [11]

    Dou Y K, Qi X, Jin H B, Cao M S, Usman Z, Hou Z L 2012 Chin. Phys. Lett. 29 077701

    [12]

    Song J X, Yang Y T, Chai C C, Liu H X, Ding R X 2008 Journal of Xidian University 35 01 (in Chinese) [宋久旭, 杨银堂, 柴长春, 刘红霞, 丁瑞雪 2008 西安电子科技大学学报 35 01]

    [13]

    Suzuki, Akira 2009 Appl. Phys. Lett. 49 450

    [14]

    Kim Y W, Kim K J, Kim H C, Cho N H, Lim K Y 2011 J. Am. Ceram. Soc. 94 991

    [15]

    Zhao D, Zhao H, Zhou W 2001 Physica E 9 679

    [16]

    Li Z M, Shi J Z, Wei X H, Li P X, Huang Y X, Li G F, Hao Y 2012 Acta Phys. Sin. 61 237103 (in Chinese) [李智敏, 施建章, 卫晓黑, 李培咸, 黄云霞, 李桂芳, 郝跃 2012 物理学报 61 237103]

    [17]

    Zhang Y, Shao X H, Wang Z Q 2010 Acta Phys. Sin. 59 5652 (in Chinese) [张云, 邵晓红, 王治强 2010 物理学报 59 5652]

    [18]

    Sheng B C, Niu M, Shao X H 2011 Conductivity and magnetic properties study on doped semiconductor material of 3C-SiC: A first-principle investigation Wuhan, April 15–17, 2011 p5758–5761

    [19]

    Yamamoto T, Yoshida H K 1999 Jpn. J. Appl. Phys. Part2 38 166

    [20]

    Yamamoto T, Katayama Y H 2001 Physics B 302 155

    [21]

    Kim K J, Lim K Y, Kim Y W 2013 J. Am. Ceram. Soc. doi: 10.1111/jace. 12498

    [22]

    Su X L, Zhou W C, Xu J, Wang J B, He X H, Fu C 2013 J. Alloys Compd. 551 343

    [23]

    Lin T, Li Q M, Li L B, Yang Y, Chen Y M 2008 Journal of Semiconductors 29 936 (in Chinese) [林涛, 李青民, 李连碧, 杨莺, 陈治明 2008 半导体学报 29 936]

    [24]

    Wu G H,Zheng S K,Liu L,Jia C J 2010 Acta Phys. Sin. 61 223101 (in Chinese) [吴国浩, 郑树凯, 刘磊, 贾长江 2012 物理学报 61 223101]

    [25]

    Liu E K, Zhu B S, Luo J S 2008 The Physics of Semiconductors 7th Edition (Beijing: Publishing House of Electronics Industry) p119 (in Chinese) [刘恩科, 朱秉升, 罗晋生 2008 半导体物理学 第7版 (北京: 电子工业出版社) 第119页]

  • [1]

    Deng X C, Sun H, Rao C Y, Zhang B 2013 Chin. Phys. B 22 017302

    [2]

    Song Q W, Zhang Y M, Han J, Tanner S P, Dimitrijev S, Zhang Y M, Tang X Y, Guo H 2013 Chin. Phys. B 22 027302

    [3]

    Liu L, Yang Y T, Ma X H 2011 Chin. Phys. B 20 127204

    [4]

    Zheng L, Zhang F, Liu S B, Dong L, Liu X F, Fan Z C, Liu B, Yan G G, Wang L, Zhao W S, Sun G S, He Z, Yang F H 2013 Chin. Phys. B 22 097302

    [5]

    Li X Y 2013 Electronic Products 01 23 (in Chinese) [李晓延 2013 今日电子 01 23]

    [6]

    Kim K J, Lim K Y, Kim Y W, Kim H C 2013 J. Am. Ceram. Soc. 96 2525

    [7]

    Wang H, Yan C F, Kong H K, Chen J J, Xin J, Shi E W 2013 Chin. Phys. B 22 027505

    [8]

    Zheng H W, Wang Z Q, Liu X Y, Diao C L, Zhang H R, Gu Y Z 2011 Appl. Phys. Lett. 99 222512

    [9]

    Zhou J, Li H, Zhang L, Cheng J, Zhao H, Chu W, Yang J, Luo Y, Wu Z 2011 J. Phys. Chem. C 115 253

    [10]

    Wang Y Y, Shen H J, Bai Y, Tang Y D, Liu K A, Li C Z, Liu X Y 2013 Chin. Phys. B 22 078102

    [11]

    Dou Y K, Qi X, Jin H B, Cao M S, Usman Z, Hou Z L 2012 Chin. Phys. Lett. 29 077701

    [12]

    Song J X, Yang Y T, Chai C C, Liu H X, Ding R X 2008 Journal of Xidian University 35 01 (in Chinese) [宋久旭, 杨银堂, 柴长春, 刘红霞, 丁瑞雪 2008 西安电子科技大学学报 35 01]

    [13]

    Suzuki, Akira 2009 Appl. Phys. Lett. 49 450

    [14]

    Kim Y W, Kim K J, Kim H C, Cho N H, Lim K Y 2011 J. Am. Ceram. Soc. 94 991

    [15]

    Zhao D, Zhao H, Zhou W 2001 Physica E 9 679

    [16]

    Li Z M, Shi J Z, Wei X H, Li P X, Huang Y X, Li G F, Hao Y 2012 Acta Phys. Sin. 61 237103 (in Chinese) [李智敏, 施建章, 卫晓黑, 李培咸, 黄云霞, 李桂芳, 郝跃 2012 物理学报 61 237103]

    [17]

    Zhang Y, Shao X H, Wang Z Q 2010 Acta Phys. Sin. 59 5652 (in Chinese) [张云, 邵晓红, 王治强 2010 物理学报 59 5652]

    [18]

    Sheng B C, Niu M, Shao X H 2011 Conductivity and magnetic properties study on doped semiconductor material of 3C-SiC: A first-principle investigation Wuhan, April 15–17, 2011 p5758–5761

    [19]

    Yamamoto T, Yoshida H K 1999 Jpn. J. Appl. Phys. Part2 38 166

    [20]

    Yamamoto T, Katayama Y H 2001 Physics B 302 155

    [21]

    Kim K J, Lim K Y, Kim Y W 2013 J. Am. Ceram. Soc. doi: 10.1111/jace. 12498

    [22]

    Su X L, Zhou W C, Xu J, Wang J B, He X H, Fu C 2013 J. Alloys Compd. 551 343

    [23]

    Lin T, Li Q M, Li L B, Yang Y, Chen Y M 2008 Journal of Semiconductors 29 936 (in Chinese) [林涛, 李青民, 李连碧, 杨莺, 陈治明 2008 半导体学报 29 936]

    [24]

    Wu G H,Zheng S K,Liu L,Jia C J 2010 Acta Phys. Sin. 61 223101 (in Chinese) [吴国浩, 郑树凯, 刘磊, 贾长江 2012 物理学报 61 223101]

    [25]

    Liu E K, Zhu B S, Luo J S 2008 The Physics of Semiconductors 7th Edition (Beijing: Publishing House of Electronics Industry) p119 (in Chinese) [刘恩科, 朱秉升, 罗晋生 2008 半导体物理学 第7版 (北京: 电子工业出版社) 第119页]

  • [1] Zhou Peng-Li, Zheng Shu-Kai, Tian Yan, Zhang Shuo-Ming, Shi Ru-Qian, He Jing-Fang, Yan Xiao-Bing. First principles calculation of dielectric properties of Al and N codoped 3C-SiC. Acta Physica Sinica, 2014, 63(5): 053102. doi: 10.7498/aps.63.053102
    [2] Chen Zhou-Wen, Li Li-Xin, Liu Ri-Ping, Wang Wen-Kui, Lü Meng-Ya. Theoretical study of phase transition of 3C-SiC under high pressure. Acta Physica Sinica, 2006, 55(7): 3576-3580. doi: 10.7498/aps.55.3576
    [3] Wang Yong-Zhen, Xu Zhao-Peng, Zhang Wen-Xiu, Zhang Xin, Wang Qian, Zhang Lei. First-principles study on the effect of Ge-doping on the conductivity of InI. Acta Physica Sinica, 2014, 63(23): 237101. doi: 10.7498/aps.63.237101
    [4] Cui Yan-Xiang, Wang Yu-Mei, Li Fang-Hua. Atomic configurations of dislocation cores in a small-angle grain boundary of 3C-SiC film. Acta Physica Sinica, 2015, 64(4): 046801. doi: 10.7498/aps.64.046801
    [5] Deng Fa-Ming, Gao Tao, Shen Yan-Hong, Gong Yan-Rong. Effect of intense laser irradiation on the structural stability of 3C-SiC. Acta Physica Sinica, 2015, 64(4): 046301. doi: 10.7498/aps.64.046301
    [6] Chen Yan, Liu Lin, Liu Jian-Hua, Zhang Rui-Jun. Effect of high pressure treatment on microstructure and resistivity of Cu75.15Al24.85 alloy. Acta Physica Sinica, 2012, 61(17): 176103. doi: 10.7498/aps.61.176103
    [7] Luo Xiao-Dong, Di Guo-Qing. Ge and Nb co-doped TiO2 films with narrow band gap and low resistivity prepared by sputtering. Acta Physica Sinica, 2012, 61(20): 206803. doi: 10.7498/aps.61.206803
    [8] LI HUI-LING, RUAN KE-QING, LI SHI-YAN, MO WEI-QIN, FAN RONG, LUO XI-GANG, CHEN XIAN-HUI, CAO LIE-ZHAO. STUDY ON THE RESISTIVITY AND HALL EFFECT OF MgB2 AND Mg0.93Li0.07B2. Acta Physica Sinica, 2001, 50(10): 2044-2048. doi: 10.7498/aps.50.2044
    [9] Liu Ya-Jie. Prediction of the magneto-resistivity of manganese oxides La0.67Ca0.33MnO3 and Pr0.7Sr0.3MnO3 via temperature and magnetic field. Acta Physica Sinica, 2013, 62(1): 017601. doi: 10.7498/aps.62.017601
    [10] Wu You-Cheng, Liu Gao-Min, Dai Wen-Feng, Gao Zhi-Peng, He Hong-Liang, Hao Shi-Rong, Deng Jian-Jun. Dynamic resistivity of Pb(Zr0.95Ti0.05)O3 depolarized ferroelectric under shock wave compression. Acta Physica Sinica, 2017, 66(4): 047201. doi: 10.7498/aps.66.047201
  • Citation:
Metrics
  • Abstract views:  532
  • PDF Downloads:  977
  • Cited By: 0
Publishing process
  • Received Date:  28 August 2013
  • Accepted Date:  11 September 2013
  • Published Online:  05 December 2013

First principle study on B-Al co-doped 3C-SiC

  • 1. College of Electronic and Informational Engineering, Hebei University, Baoding 071002, China;
  • 2. Research Center for Computational Materials, Hebei University, Baoding 071002, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 61204079, 61306098).

Abstract: The lattice parameters, band structure, density of states, effective mass, carrier concentration and electrical resistivity of 3C-SiC in different doped forms (undoped, B-doped, Al-doped and B-Al co-doped) are calculated using the plane wave ultrasoft pseudopotential based on density functional theory. Calculations indicate that as the B or Al replaces Si atoms, both the conduction band and valence band shift to higher energy level. The top of valence band shifts quicker, resulting in the decrease of the band gap. B-Al co-doped 3C-SiC shows the narrowest bandgap while the pure one has the widest. Effective mass of B-doped 3C-SiC decreases but that of Al-doped 3C-SiC increases; while B-Al co-doped 3C-SiC effective mass, whose value approaches to the undoped, can be understood in terms of different compensation. As the acceptor impurities, B and Al will greatly increase the carrier density of valence band top, and the carrier density of the co-doped is three times as Large as the B-doped or Al-doped 3C-SiC. In addition, B-Al co-doping has the lowest resistivity among the four doping forms displaying its significant advantages in electrical property.

Reference (25)

Catalog

    /

    返回文章
    返回