Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of defect on the programming speed of charge trapping memories

Wang Jia-Yu Zhao Yuan-Yang Xu Jian-Bin Dai Yue-Hua

Effect of defect on the programming speed of charge trapping memories

Wang Jia-Yu, Zhao Yuan-Yang, Xu Jian-Bin, Dai Yue-Hua
PDF
Get Citation
  • The programming speed of charge trapping memories (CTM) with different defects were studied based on the first principle and VASP package. The defects include threefold oxygen vacancy (VO3), fourfold oxygen vacancy (VO4), hafnium vacancy (VHf), and interstitial oxygen (IO). Trapping energy, energy band offset, and the trapping density were calculated and compared. Results show that VO3, VO4 only trap holes, VHf only trap electrons, and IO trap electrons and holes; the most important is the trapping energy which is greater in VHf. It is the best for trapping charges; because the charge tunneling into trapping layer is easy in VHf. It can also reduce the tunneling time. Finally, the trapping densities were compared with each other: VHf's trapping density is greater than other defects, i.e. charges can be trapped easier than by other defects. All of these show that VHf is the best one for reducing programming time. This paper will provide a theoretical guidance for increasing the programming speed ofCTM.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61376106).
    [1]

    Jin L, Zhang M H, Huo Z L, Yu Z A, Jiang D D, Wang Y, Bai J, Chen J N, Liu M 2012 Sci. China Tech. Sci. 55 888

    [2]

    Sabina S, Francesco D, Alessio L, Gabriele C, Olivier S 2012 Appl. Phys. Exp. 5 021102

    [3]

    Fu J, Singh N, Yang B, Zhu C X, Lo G Q, Kwong D L 2008 IEEE Electron Dev. Lett. 29 518

    [4]

    Zeng Y J, Dai Y H, Chen J N 2012 Materials and Structures 49 382 (in Chinese) [曾叶娟, 代月花, 陈军宁 2012 材料与结构 49 382]

    [5]

    Wang Y Q, Gao D Y, Hwang W S, Shen C, Zhang G, Samudra G, Y. Yeo C, Yoo W J 2006 Electron Devices Meeting, 2006. IEDM'06. International San Francisco, Dec. 11-13 2006 p1

    [6]

    Tsai P H, Chang-Liao K S, Liu C Y, Wang T K, Tzeng P J, Lin C H, Lee L S, Tsai M J 2008 IEEE Electron Dev. Lett. 29 265

    [7]

    Paul A, Sridhar Ch, Gedam S, Mahapatra S 2006 Electron Devices Meeting, 2006. IEDM'06. International San Francisco, Dec. 11-13 2006 393

    [8]

    Maikap S, Lee H Y, Wang T Y, Tzeng P-J, Wang C C, L S Lee, K C Liu, Yang J-R , Tsai M-J 2007 Semiconductor Science and Technology 22 884

    [9]

    Zhao Z Y, Liu Q J, Zhang J, Zhu Z Q 2007 Acta Phys. Sin. 56 6592 (in Chinese) [赵宗彦, 柳清菊, 张瑾, 朱忠其 2007 物理学报 56 6592]

    [10]

    Sun B, Liu S J, Zhu W J 2006 Acta Phys. Sin. 55 6589 (in Chinese) [孙博, 刘绍军, 祝文军 2006 物理学报 55 6589]

    [11]

    Ma X G, Tang C Q, Huang J Q, Hu L F, Xue X, Zhou W B 2006 Acta Phys. Sin. 55 4208 (in Chinese) [马新国, 唐超群, 黄金球, 胡连峰, 薛霞, 周文斌 2006 物理学报 55 4208]

    [12]

    Gong C W, Wang Y N, Yang D Z 2006 Acta Phys. Sin. 55 2877 (in Chinese) [宫长伟, 王轶农, 杨大智 2006 物理学报 55 2877]

    [13]

    Xu L F, Gu C Z, Yu Y 2004 Acta Phys. Sin. 53 2710 (in Chinese) [徐力方, 顾长志, 于洋 2004 物理学报 53 2710]

    [14]

    Zhang W, Hou Z F 2012 Phys. Status Solid B 250 352

    [15]

    Foster A S, Gejo F L, Shluger A L, Nieminen R M 2002 Phys. Rev. B 65 174117

    [16]

    Cho D Y, Lee J M, Oh S J, Jang H, Kim J Y, Park J H, Tanaka A 2007 Phys. Rev. B 76 165411

    [17]

    Li D J, Liu M, Long S B, Wang Q, Zhang M H, Liu J, Yang S Q, Wang Y, Yang X N, Chen J N, Dai Y H 2009 Nanoelectronic Device & Technology 46 518 (in Chinese) [李德君, 刘明, 龙世兵, 王琴, 张满红, 刘璟, 杨仕谦, 王永, 杨潇楠, 陈军宁, 代月花 2009 纳米器件与技术 46 518]

    [18]

    Spiga S, Congedo G, Russo U, Spiga S, Congedo G, Russo U, Lamperti A, Salicio O, Driussi F, Vianello E 2010 Solid-State Device Research Conference, European Sevilla Sept. 14-16 2010 p408

    [19]

    Park J, Cho M, Kim S K, Park T J, Lee S W, Hong S H, Hwang C S 2005 Appl. Phys. Lett. 86 112907

    [20]

    Song Y C, Liu X Y, Du G, Kang J F, Han R Q 2008 Chin. Phys. B 17 2678

    [21]

    Zhou M X, Zhao Q, Zhang W, Liu Q, Dai Y H 2012 Journal of Semiconductors 33 072002

    [22]

    Gritsenko V A, Nekrashevich S S, Vasilev V V, Shaposhnikov A V 2009 Microelectronic Engineering 78 1866

    [23]

    Lee C K, Cho E, Lee H S, Hwang C S, Han S 2008 Phys. Rev. B 86 012102

    [24]

    Zheng J X, Ceder, Maxisch T, Chim W K, Choi W K 2009 Phys. Rev. B 75 104112

  • [1]

    Jin L, Zhang M H, Huo Z L, Yu Z A, Jiang D D, Wang Y, Bai J, Chen J N, Liu M 2012 Sci. China Tech. Sci. 55 888

    [2]

    Sabina S, Francesco D, Alessio L, Gabriele C, Olivier S 2012 Appl. Phys. Exp. 5 021102

    [3]

    Fu J, Singh N, Yang B, Zhu C X, Lo G Q, Kwong D L 2008 IEEE Electron Dev. Lett. 29 518

    [4]

    Zeng Y J, Dai Y H, Chen J N 2012 Materials and Structures 49 382 (in Chinese) [曾叶娟, 代月花, 陈军宁 2012 材料与结构 49 382]

    [5]

    Wang Y Q, Gao D Y, Hwang W S, Shen C, Zhang G, Samudra G, Y. Yeo C, Yoo W J 2006 Electron Devices Meeting, 2006. IEDM'06. International San Francisco, Dec. 11-13 2006 p1

    [6]

    Tsai P H, Chang-Liao K S, Liu C Y, Wang T K, Tzeng P J, Lin C H, Lee L S, Tsai M J 2008 IEEE Electron Dev. Lett. 29 265

    [7]

    Paul A, Sridhar Ch, Gedam S, Mahapatra S 2006 Electron Devices Meeting, 2006. IEDM'06. International San Francisco, Dec. 11-13 2006 393

    [8]

    Maikap S, Lee H Y, Wang T Y, Tzeng P-J, Wang C C, L S Lee, K C Liu, Yang J-R , Tsai M-J 2007 Semiconductor Science and Technology 22 884

    [9]

    Zhao Z Y, Liu Q J, Zhang J, Zhu Z Q 2007 Acta Phys. Sin. 56 6592 (in Chinese) [赵宗彦, 柳清菊, 张瑾, 朱忠其 2007 物理学报 56 6592]

    [10]

    Sun B, Liu S J, Zhu W J 2006 Acta Phys. Sin. 55 6589 (in Chinese) [孙博, 刘绍军, 祝文军 2006 物理学报 55 6589]

    [11]

    Ma X G, Tang C Q, Huang J Q, Hu L F, Xue X, Zhou W B 2006 Acta Phys. Sin. 55 4208 (in Chinese) [马新国, 唐超群, 黄金球, 胡连峰, 薛霞, 周文斌 2006 物理学报 55 4208]

    [12]

    Gong C W, Wang Y N, Yang D Z 2006 Acta Phys. Sin. 55 2877 (in Chinese) [宫长伟, 王轶农, 杨大智 2006 物理学报 55 2877]

    [13]

    Xu L F, Gu C Z, Yu Y 2004 Acta Phys. Sin. 53 2710 (in Chinese) [徐力方, 顾长志, 于洋 2004 物理学报 53 2710]

    [14]

    Zhang W, Hou Z F 2012 Phys. Status Solid B 250 352

    [15]

    Foster A S, Gejo F L, Shluger A L, Nieminen R M 2002 Phys. Rev. B 65 174117

    [16]

    Cho D Y, Lee J M, Oh S J, Jang H, Kim J Y, Park J H, Tanaka A 2007 Phys. Rev. B 76 165411

    [17]

    Li D J, Liu M, Long S B, Wang Q, Zhang M H, Liu J, Yang S Q, Wang Y, Yang X N, Chen J N, Dai Y H 2009 Nanoelectronic Device & Technology 46 518 (in Chinese) [李德君, 刘明, 龙世兵, 王琴, 张满红, 刘璟, 杨仕谦, 王永, 杨潇楠, 陈军宁, 代月花 2009 纳米器件与技术 46 518]

    [18]

    Spiga S, Congedo G, Russo U, Spiga S, Congedo G, Russo U, Lamperti A, Salicio O, Driussi F, Vianello E 2010 Solid-State Device Research Conference, European Sevilla Sept. 14-16 2010 p408

    [19]

    Park J, Cho M, Kim S K, Park T J, Lee S W, Hong S H, Hwang C S 2005 Appl. Phys. Lett. 86 112907

    [20]

    Song Y C, Liu X Y, Du G, Kang J F, Han R Q 2008 Chin. Phys. B 17 2678

    [21]

    Zhou M X, Zhao Q, Zhang W, Liu Q, Dai Y H 2012 Journal of Semiconductors 33 072002

    [22]

    Gritsenko V A, Nekrashevich S S, Vasilev V V, Shaposhnikov A V 2009 Microelectronic Engineering 78 1866

    [23]

    Lee C K, Cho E, Lee H S, Hwang C S, Han S 2008 Phys. Rev. B 86 012102

    [24]

    Zheng J X, Ceder, Maxisch T, Chim W K, Choi W K 2009 Phys. Rev. B 75 104112

  • [1] Jiang Xian-Wei, Dai Guang-Zhen, Lu Shi-Bin, Wang Jia-Yu, Dai Yue-Hua, Chen Jun-Ning. Effect of Al doping on the reliability of HfO2 as a trapping layer: First-principles study. Acta Physica Sinica, 2015, 64(9): 091301. doi: 10.7498/aps.64.091301
    [2] Dai Guang-Zhen, Dai Yue-Hua, Xu Tai-Long, Wang Jia-Yu, Zhao Yuan-Yang, Chen Jun-Ning, Liu Qi. First principles study on influence of oxygen vacancy in HfO2 on charge trapping memory. Acta Physica Sinica, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [3] Jiang Xian-Wei, Lu Shi-Bin, Dai Guang-Zhen, Wang Jia-Yu, Jin Bo, Chen Jun-Ning. Research of data retention for charge trapping memory by first-principles. Acta Physica Sinica, 2015, 64(21): 213102. doi: 10.7498/aps.64.213102
    [4] Li Yu-Bo, Wang Xiao, Dai Ting-Ge, Yuan Guang-Zhong, Yang Hang-Sheng. First-principle study of vacancy-induced cubic boron nitride electronic structure and optical propertiy changes. Acta Physica Sinica, 2013, 62(7): 074201. doi: 10.7498/aps.62.074201
    [5] Hou Qing-Yu, Li Yong, Zhao Chun-Wang. First-principles study of Al-doped and vacancy on the magnetism of ZnO. Acta Physica Sinica, 2017, 66(6): 067202. doi: 10.7498/aps.66.067202
    [6] Sheng Zhe, Dai Xian-Ying, Miao Dong-Ming, Wu Shu-Jing, Zhao Tian-Long, Hao Yue. First-principles study of hydrogen storage properties of silicene under different Li adsorption components. Acta Physica Sinica, 2018, 67(10): 107103. doi: 10.7498/aps.67.20172720
    [7] Hou Qing-Yu, Zhang Yue, Zhang Tao. First principle study on the electron life span of degenerate anatase phase TiO2 semi-conductor with high concentration of oxygen vacancies. Acta Physica Sinica, 2008, 57(5): 3155-3159. doi: 10.7498/aps.57.3155
    [8] He Xu, He Lin, Tang Ming-Jie, Xu Ming. Effects of the vacancy point-defect on electronic structure and optical properties of LiF under high pressure: A first principles investigation. Acta Physica Sinica, 2011, 60(2): 026102. doi: 10.7498/aps.60.026102
    [9] Wang Chao-Ying, Wang Zhen-Qing, Meng Qing-Yuan. Comparative study of the first-principles and empirical potential simulation of vacancies in silicon. Acta Physica Sinica, 2010, 59(5): 3370-3376. doi: 10.7498/aps.59.3370
    [10] Dai Yue-Hua, Pan Zhi-Yong, Chen Zhen, Wang Fei-Fei, Li Ning, Jin Bo, Li Xiao-Feng. Orientation and concentration of Ag conductive filament in HfO2-based resistive random access memory: first-principles study. Acta Physica Sinica, 2016, 65(7): 073101. doi: 10.7498/aps.65.073101
  • Citation:
Metrics
  • Abstract views:  599
  • PDF Downloads:  536
  • Cited By: 0
Publishing process
  • Received Date:  12 September 2013
  • Accepted Date:  21 November 2013
  • Published Online:  05 March 2014

Effect of defect on the programming speed of charge trapping memories

  • 1. School of Electronics and Information Engineering, Anhui University, Hefei 230039, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 61376106).

Abstract: The programming speed of charge trapping memories (CTM) with different defects were studied based on the first principle and VASP package. The defects include threefold oxygen vacancy (VO3), fourfold oxygen vacancy (VO4), hafnium vacancy (VHf), and interstitial oxygen (IO). Trapping energy, energy band offset, and the trapping density were calculated and compared. Results show that VO3, VO4 only trap holes, VHf only trap electrons, and IO trap electrons and holes; the most important is the trapping energy which is greater in VHf. It is the best for trapping charges; because the charge tunneling into trapping layer is easy in VHf. It can also reduce the tunneling time. Finally, the trapping densities were compared with each other: VHf's trapping density is greater than other defects, i.e. charges can be trapped easier than by other defects. All of these show that VHf is the best one for reducing programming time. This paper will provide a theoretical guidance for increasing the programming speed ofCTM.

Reference (24)

Catalog

    /

    返回文章
    返回