x

## 留言板

Modeling and simulation analysis of fractional-order Boost converter in pseudo-continuous conduction mode

## Modeling and simulation analysis of fractional-order Boost converter in pseudo-continuous conduction mode

Tan Cheng, Liang Zhi-Shan
PDF

• #### Abstract

Based on the fact that the inductor and the capacitor are fractional in nature, the fractional order mathematical model of the Boost converter in pseudo-continuous conduction mode is established by using fractional order calculus theory. According to the state average modeling method, the fractional order state average model of Boost converter in pseudo-continuous conduction mode is built. In view of the mathematical model, the inductor current and the output voltage are analyzed and the transfer functions are derived. Then the differences between the integer order and the fractional order mathematical models are analyzed. On the basis of the improved Oustaloup fractional order calculus for filter approximation algorithm and the model of fractional order inductance and capacitance, the simulation results have been compared between the mathematical model and circuit model with Matlab/Simulink software; the origins of model error are analyzed and the correctness of the modeling in fractional order and the theoretical analysis is verified. Finally, the differences and the relations of Boost converter among the continuous conduction mode, the discontinuous conduction mode, and the pseudo-continuous conduction mode are indicated.

#### Authors and contacts

• Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51071176), and the China University of Petroleum(Beijing) Frontier Foundation (Grant No. 2010QZ03).

#### References

 [1] Yang S P, Zhang R X 2008 Acta Phys. Sin. 57 6837 (in Chinese)[杨世平, 张若洵2008 物理学报57 6837] [2] Zhang C F, Gao J F, Xu L 2007 Acta Phys. Sin. 56 5124 (in Chinese)[张成芬, 高金峰, 徐磊2007 物理学报56 5124] [3] Li C L, Yu S M, Luo X S 2012 Chin. Phys. B 21 172 [4] Kenneth S M, Bertram R 1993 An Introduction to the Fractional Calculus and Fractiona Differential Equations (New Jersey: John Wiley & Sons) p21 [5] Shockooh A, Suarez L 1999 Journal of Viberation and Control. 5 331 [6] Bohannan G W 2002 Proceedings of the 41st IEEE International Conference on Decision and Control, Tutorial Workshop 2:Fractional Calculus Applications in Automatic Control and Robotics Las Vegas, USA, December 10-13, 2002 p1 [7] Westerlund S, Ekstam L 1994 IEEE Trans. Dielectr. Electr. Insulat. 1 826 [8] Westerlund S 2002 Dead matter has memory (Kalmar, Sweden: Causal Consulting)chapt. 7 [9] Ahmad W 2003 Proceedings of the 2003 International Symposium on Circuits and Systems Bangkok, Thailand, May 25-28, 2003 3 p5 [10] Martinez R, Bolea Y, Grau A, Martinez H 2009 IEEE Conference on Emerging Technologies & Factory Automation Palma de Mallorca, Spain, September 22-25, 2009 p1 [11] Wang F Q, Ma X K 2011 Acta Phys. Sin. 60 070506 (in Chinese)[王发强, 马西奎2011 物理学报60 070506] [12] Wang F Q, Ma X K 2013 Scientia Sinica Technological. 43 368 (in Chinese)[王发强, 马西奎2013 中国科学: 43 368] [13] Ma D S, Ki W H 2007 IEEE Trans. Circuit and Systtems Ⅱ: Express Briefs. 54 825 [14] Kanakasabai V, Ramesh O, Dipti S 2002 IEEE Trans. Power Electronics. 17 677 [15] Podlubny I 1999 Fractional differential equations (New York: Academic Press) chapt 1-2,4 [16] Yu H K 2010 M. S. Thesis. (Sichuan: Southeast Jiaotong University) (in Chinese) [于海坤2010 硕士学位论文 (四川: 西南交通大学)] [17] Wang F Q, Ma X K 2013 Chin. Phys. B 22 236 [18] Xue D Y, Chen Y Q 2007 MATLAB Solutions to Mathematical Problems in Control (Beijing: Tsinghua University Press) p435 (in Chinese) [薛定宇, 陈阳泉2007 控制数学问题的MATLAB 求解(北京: 清华大学出版社) 第 435 页] [19] Cao W S, Yang Y X 2007 Journal of System Simulation. 19 1329 (in Chinese) [曹文思, 杨育霞2007 系统仿真学报 19 1329]

#### Cited By

•  [1] Yang S P, Zhang R X 2008 Acta Phys. Sin. 57 6837 (in Chinese)[杨世平, 张若洵2008 物理学报57 6837] [2] Zhang C F, Gao J F, Xu L 2007 Acta Phys. Sin. 56 5124 (in Chinese)[张成芬, 高金峰, 徐磊2007 物理学报56 5124] [3] Li C L, Yu S M, Luo X S 2012 Chin. Phys. B 21 172 [4] Kenneth S M, Bertram R 1993 An Introduction to the Fractional Calculus and Fractiona Differential Equations (New Jersey: John Wiley & Sons) p21 [5] Shockooh A, Suarez L 1999 Journal of Viberation and Control. 5 331 [6] Bohannan G W 2002 Proceedings of the 41st IEEE International Conference on Decision and Control, Tutorial Workshop 2:Fractional Calculus Applications in Automatic Control and Robotics Las Vegas, USA, December 10-13, 2002 p1 [7] Westerlund S, Ekstam L 1994 IEEE Trans. Dielectr. Electr. Insulat. 1 826 [8] Westerlund S 2002 Dead matter has memory (Kalmar, Sweden: Causal Consulting)chapt. 7 [9] Ahmad W 2003 Proceedings of the 2003 International Symposium on Circuits and Systems Bangkok, Thailand, May 25-28, 2003 3 p5 [10] Martinez R, Bolea Y, Grau A, Martinez H 2009 IEEE Conference on Emerging Technologies & Factory Automation Palma de Mallorca, Spain, September 22-25, 2009 p1 [11] Wang F Q, Ma X K 2011 Acta Phys. Sin. 60 070506 (in Chinese)[王发强, 马西奎2011 物理学报60 070506] [12] Wang F Q, Ma X K 2013 Scientia Sinica Technological. 43 368 (in Chinese)[王发强, 马西奎2013 中国科学: 43 368] [13] Ma D S, Ki W H 2007 IEEE Trans. Circuit and Systtems Ⅱ: Express Briefs. 54 825 [14] Kanakasabai V, Ramesh O, Dipti S 2002 IEEE Trans. Power Electronics. 17 677 [15] Podlubny I 1999 Fractional differential equations (New York: Academic Press) chapt 1-2,4 [16] Yu H K 2010 M. S. Thesis. (Sichuan: Southeast Jiaotong University) (in Chinese) [于海坤2010 硕士学位论文 (四川: 西南交通大学)] [17] Wang F Q, Ma X K 2013 Chin. Phys. B 22 236 [18] Xue D Y, Chen Y Q 2007 MATLAB Solutions to Mathematical Problems in Control (Beijing: Tsinghua University Press) p435 (in Chinese) [薛定宇, 陈阳泉2007 控制数学问题的MATLAB 求解(北京: 清华大学出版社) 第 435 页] [19] Cao W S, Yang Y X 2007 Journal of System Simulation. 19 1329 (in Chinese) [曹文思, 杨育霞2007 系统仿真学报 19 1329]
•  [1] Tan Cheng, Liang Zhi-Shan, Zhang Ju-Qiu. Non-linear control for the fractional boost converter in pseudo continuous conduction mode. Acta Physica Sinica, 2014, 63(20): 200502. doi: 10.7498/aps.63.200502 [2] Wang Fa-Qiang, Ma Xi-Kui. Fractional order modeling and simulation analysis of Boost converter in continuous conduction mode operation. Acta Physica Sinica, 2011, 60(7): 070506. doi: 10.7498/aps.60.070506 [3] Xie Ling-Ling, Gong Ren-Xi, Zhuo Hao-Ze, Ma Xian-Hua. Investigation of tangent bifurcation in voltage mode controlled DCM boost converters. Acta Physica Sinica, 2012, 61(5): 058401. doi: 10.7498/aps.61.058401 [4] Yang Shi-Ping, Zhang Ruo-Xun. Chaos in the fractional-order conjugate Chen system and its circuit emulation. Acta Physica Sinica, 2009, 58(5): 2957-2962. doi: 10.7498/aps.58.2957 [5] Chen Xiang-Rong, Liu Chong-Xin, Li Yong-Xun. Nonlinear observer based full-state projective synchronization for a class of fractional-order chaotic system. Acta Physica Sinica, 2008, 57(3): 1453-1457. doi: 10.7498/aps.57.1453 [6] Zhang Hua, Wu Jian-Jun, Zhang Dai-Xian, Zhang Rui, He Zhen. A modified electromechanical model with one-dimensional abalation model for numerical analysis of the pulsed plasma thruster. Acta Physica Sinica, 2013, 62(21): 210202. doi: 10.7498/aps.62.210202 [7] Cheng Qiu-Hu, Wang Shi-Yu, Guo Zhen, Cai De-Fang, Li Bing-Bin. Simulation model of super Gaussian beam pumped Q-switched solid-state laser. Acta Physica Sinica, 2017, 66(18): 180204. doi: 10.7498/aps.66.180204 [8] Lu Wei-Guo, Zhou Luo-Wei, Luo Quan-Ming, Du Xiong. Time-delayed feedback control of chaos in BOOST converter and its optimization. Acta Physica Sinica, 2007, 56(11): 6275-6281. doi: 10.7498/aps.56.6275 [9] Wang Fa-Qiang, Zhang Hao, Ma Xi-Kui. Studied on low-frequency oscillation in the Boost converter with one cycle control. Acta Physica Sinica, 2008, 57(3): 1522-1528. doi: 10.7498/aps.57.1522 [10] Cheng Wei-Bin, Guo Ying-Na, Kang Si-Min, Wang Yue-Long, Huo Ai-Qing, Tang Nan. Study on control power in Boost converter with parameter ramp resonance. Acta Physica Sinica, 2009, 58(7): 4439-4448. doi: 10.7498/aps.58.4439 [11] Ma Wei, Wang Ming-Yu, Nie Hai-Long. Control of Hopf bifurcation in the one-cycle controlled Boost converter and its experimental implementation. Acta Physica Sinica, 2011, 60(10): 100202. doi: 10.7498/aps.60.100202 [12] Zhang Fang-Ying, Hu Wei, Chen Xin-Bing, Chen Hong, Tang Xiong-Min. Chaos control and anti-control in Boost converter based on altering correlation. Acta Physica Sinica, 2015, 64(4): 048401. doi: 10.7498/aps.64.048401 [13] Zhou Yu-Fei, Chen Jun-Ning, Ke Dao-Ming, Shi Long-Xing, Sun Wei-Feng, C.K.Tse. Application of resonant parametric perturbation to the chaos control in Boost converter and its optimization. Acta Physica Sinica, 2004, 53(11): 3676-3683. doi: 10.7498/aps.53.3676 [14] Liu Zhong, Bao Bo-Cheng, Xu Jian-Ping. Bifurcation of Boost converter with two boundaries and its stability control by ramp compensation. Acta Physica Sinica, 2009, 58(5): 2949-2956. doi: 10.7498/aps.58.2949 [15] Cheng Wei-Bin, Kang Si-Min, Wang Yue-Long, Tang Nan, Guo Ying-Na, Huo Ai-Qing. Fast-scale instability and dynamic parameter resonance of power factor correction Boost converter. Acta Physica Sinica, 2011, 60(2): 020506. doi: 10.7498/aps.60.020506 [16] He Sheng-Zhong, Zhou Guo-Hua, Xu Jian-Ping, Wu Song-Rong, Yan Tie-Sheng, Zhang Xi. Precise modeling and dynamic characteristics of valley V2 controlled Boost converter. Acta Physica Sinica, 2014, 63(17): 170503. doi: 10.7498/aps.63.170503 [17] Xu Tian-Hong, Yao Chen, Wan Wen-Jian, Zhu Yong-Hao, Cao Jun-Cheng. Analyses of the output power and beam quality of the tapered terahertz quantum cascade lasers. Acta Physica Sinica, 2015, 64(22): 224212. doi: 10.7498/aps.64.224212 [18] Qiao Xiao-Hua, Bao Bo-Cheng. Three-dimensional four-wing generalized augmented Lü system. Acta Physica Sinica, 2009, 58(12): 8152-8159. doi: 10.7498/aps.58.8152 [19] Liu Shi-Da, Fu Zun-Tao, Liu Shi-Kuo. Fractional derivative dynamics of intermittent turbulence. Acta Physica Sinica, 2014, 63(7): 074701. doi: 10.7498/aps.63.074701 [20] Sun Di-Hua, Tian Chuan. A traffic flow lattice model with the consideration of driver anticipation effect and its numerical simulation. Acta Physica Sinica, 2011, 60(6): 068901. doi: 10.7498/aps.60.068901
•  Citation:
##### Metrics
• Abstract views:  1096
• Cited By: 0
##### Publishing process
• Received Date:  18 September 2013
• Accepted Date:  23 December 2013
• Published Online:  05 April 2014

## Modeling and simulation analysis of fractional-order Boost converter in pseudo-continuous conduction mode

• 1. College of Geophysics and Information Engineering, China University of Petroleum (Beijing), Beijing 102249, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 51071176), and the China University of Petroleum(Beijing) Frontier Foundation (Grant No. 2010QZ03).

Abstract: Based on the fact that the inductor and the capacitor are fractional in nature, the fractional order mathematical model of the Boost converter in pseudo-continuous conduction mode is established by using fractional order calculus theory. According to the state average modeling method, the fractional order state average model of Boost converter in pseudo-continuous conduction mode is built. In view of the mathematical model, the inductor current and the output voltage are analyzed and the transfer functions are derived. Then the differences between the integer order and the fractional order mathematical models are analyzed. On the basis of the improved Oustaloup fractional order calculus for filter approximation algorithm and the model of fractional order inductance and capacitance, the simulation results have been compared between the mathematical model and circuit model with Matlab/Simulink software; the origins of model error are analyzed and the correctness of the modeling in fractional order and the theoretical analysis is verified. Finally, the differences and the relations of Boost converter among the continuous conduction mode, the discontinuous conduction mode, and the pseudo-continuous conduction mode are indicated.

Reference (19)

/