Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultrafast spectroscopic study for singlet fission

Zhang Bo Zhang Chun-Feng Li Xi-You Wang Rui Xiao Min

Ultrafast spectroscopic study for singlet fission

Zhang Bo, Zhang Chun-Feng, Li Xi-You, Wang Rui, Xiao Min
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Singlet fission is a spin-allowed process that creates two triplet excitons from one photo-excited singlet exciton in organic semiconductors. This process of carrier multiplication holds the great potential to break the theoretical efficiency limit in single-junction solar cells by making better use of high-energy photons, while capturing lower-energy photons in the usual style. Photovoltaic devices based on singlet fission have achieved external quantum efficiencies in excess of 100%. In this paper, we first introduce the basic concept about singlet fission and review the history of the field briefly. Then, we report some reflent advances in the reflearch of singlet fission progress with the combination of our group’s productions. Tetracene and pentacene are chosen as typical polyacene materials for discuss. We describe how scientists make progresses in understanding the underlying physics in singlet fission process. The experimental methods of transient absorption spectra, time-resolved fluorescence spectra and time-resolved two-photon photoemission spectra render numerous results for analysis. Moreover, a survey about the debate on the direct or indirect mechanism with transient optical study is provided. It has been verified that multiexciton state intermediates in singlet fission process and the factors of energy level alignments, intermolecular interaction as well as lattice vibrations play a role in it. Last, we briefly summarize the implications of singlet fission in organic solar devices by introducing several composite architectures for singlet-fission photovoltaics. Designing efficient and cheap solar cells is the ultimate goal for understanding the intrinsic photophysics of singlet fission. To obtain high efficiencies, it is important to adapt proper materials and new organic/inorganic architectures may become a promising direction. Also, finding a way for efficient triplet exciton dissociation should be considered seriously. It is believable that these guidelines can lead to the development of cheap and efficient fission-based devices.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB932903, 2012CB921801), and the National Natural Science Foundation of China (Grant Nos. 91233103, 61108001, 11227406, 11321063).
    [1]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510

    [2]

    Wrfel P 1997 Sol. Energy Mater. Sol. Cells 46 43

    [3]

    O’Dwyer M F, Humphrey T, Lewis R A, Zhang C 2008 Microelectron. J. 39 656

    [4]

    Conibeer G, Jiang C W, König D, Shrestha S, Walsh T, Green M 2008 Thin Solid Films 516 6968

    [5]

    Ellingson R J, Beard M C, Johnson J C, Yu P R, Micic O I, Nozik A J, Shabaev A, Efros A L 2005 Nano Lett. 5 865

    [6]

    Beard M C, Knutsen K P, Yu P R, Luther J M, Song Q, Metzger W K, Ellingson R J, Nozik A J 2007 Nano Lett. 7 2506

    [7]

    Nozik A J, Beard M C, Luther J M, Law M, Ellingson R J, Johnson J C 2010 Chem. Rev. 110 6873

    [8]

    Hanna M, Nozik A 2006 J. Appl. Phys. 100 074510

    [9]

    Zhang B, Zhang C F, Wang R, Tan Z A, Liu Y L, Guo W, Zhai X L, Cao Y, Wang X Y, Xiao M 2014 J. Phys. Chem. Lett. 5 3462

    [10]

    Schaller R D, Klimov V I 2004 Phys. Rev. Lett. 92 186601

    [11]

    Xiao J, Wang Y, Hua Z, Wang X Y, Zhang C F, Xiao M 2012 Nat. Commun. 3 1170

    [12]

    Smith M B, Michl J 2010 Chem. Rev. 110 6891

    [13]

    Smith M B, Michl J 2013 Annu. Rev. Phys. Chem. 64 361

    [14]

    Singh S, Jones W, Siebrand W, Stoicheff B, Schneider W 1965 J. Chem. Phys. 42 330

    [15]

    Swenberg C, Stacy W 1968 Chem. Phys. Lett. 2 327

    [16]

    Merrifield R, Avakian P, Groff R 1969 Chem. Phys. Lett. 3 155

    [17]

    Geacintov N, Pope M, Vogel F 1969 Phys. Rev. Lett. 22 593

    [18]

    Merrifield R 1971 Pure Appl. Chem. 27 481

    [19]

    Jundt C, Klein G, Sipp B, Le Moigne J, Joucla M, Villaeys A 1995 Chem. Phys. Lett. 241 84

    [20]

    Mller A M, Avlasevich Y S, Schoeller W W, Mllen K, Bardeen C J 2007 J. Am. Chem. Soc. 129 14240

    [21]

    Ma L, Zhang K K, Kloc C, Sun H D, Michel-Beyerle M E, Gurzadyan G G 2012 PCCP 14 8307

    [22]

    Piland G B, Burdett J J, Kurunthu D, Bardeen C J 2013 J. Phys. Chem. C 117 1224

    [23]

    Walker B J, Musser A J, Beljonne D, Friend R H 2013 Nat. Chem. 5 1019

    [24]

    Kraabel B, Hulin D, Aslangul C, Lapersonne-Meyer C, Schott M 1998 Chem. Phys. 227 83

    [25]

    Lanzani G, Stagira S, Cerullo G, De Silvestri S, Comoretto D, Moggio I, Cuniberti C, Musso G, Dellepiane G 1999 Chem. Phys. Lett. 313 525

    [26]

    Lanzani G, Cerullo G, Zavelani-Rossi M, De Silvestri S, Comoretto D, Musso G, Dellepiane G 2001 Phys. Rev. Lett. 87 187402

    [27]

    Guo J M, Ohkita H, Benten H, Ito S 2009 J. Am. Chem. Soc. 131 16869

    [28]

    Wang C, Tauber M J 2010 J. Am. Chem. Soc. 132 13988

    [29]

    Lee J, Jadhav P, Reusswig P D, Yost S R, Thompson N J, Congrefle D N, Hontz E, Van Voorhis T, Baldo M A 2013 Acc. Chem. Res. 46 1300

    [30]

    Congrefle D N, Lee J, Thompson N J, Hontz E, Yost S R, Reusswig P D, Bahlke M E, Reineke S, Van Voorhis T, Baldo M A 2013 Science 340 334

    [31]

    Tabachnyk M, Ehrler B, Gélinas S, Böhm M L, Walker B J, Musselman K P, Greenham N C, Friend R H, Rao A 2014 Nat. Mater. 13 1033

    [32]

    Merrifield R 1968 J. Chem. Phys. 48 4318

    [33]

    Johnson R, Merrifield R 1970 Phys. Rev. B 1 896

    [34]

    Greyson E C, Vura-Weis J, Michl J, Ratner M A 2010 J. Phys. Chem. B 114 14168

    [35]

    Zimmerman P M, Zhang Z Y, Musgrave C B 2010 Nat. Chem. 2 648

    [36]

    Zimmerman P M, Bell F, Casanova D, Head-Gordon M 2011 J. Am. Chem. Soc. 133 19944

    [37]

    Zimmerman P M, Musgrave C B, Head-Gordon M 2013 Acc. Chem. Res. 46 1339

    [38]

    Chan W L, Ligges M, Jailaubekov A, Kaake L, Miaja-Avila L, Zhu X Y 2011 Science 334 1541

    [39]

    Chan W L, Ligges M, Zhu X Y 2012 Nat. Chem. 4 840

    [40]

    Chan W L, Berkelbach T C, Provorse M R, Monahan N R, Tritsch J R, Hybertsen M S, Reichman D R, Gao J L, Zhu X Y 2013 Acc. Chem. Res. 46 1321

    [41]

    Yost S R, Lee J Y, Wilson M W, Wu T, McMahon D P, Parkhurst R R, Thompson N J, Congrefle D N, Rao A, Johnson K 2014 Nat. Chem. 6 492

    [42]

    Beljonne D, Yamagata H, Brédas J, Spano F, Olivier Y 2013 Phys. Rev. Lett. 110 226402

    [43]

    Busby E, Xia J L, Wu Q, Low J Z, Song R, Miller J R, Zhu X Y, Campos L M, Sfeir M Y 2015 Nat. Mater. 14 426

    [44]

    Paci I, Johnson J C, Chen X D, Rana G, Popovic D, David D E, Nozik A J, Ratner M A, Michl J 2006 J. Am. Chem. Soc. 128 16546

    [45]

    Burdett J J, Mller A M, Gosztola D, Bardeen C J 2010 J. Chem. Phys. 133 144506

    [46]

    Lee J, Jadhav P, Baldo M 2009 Appl. Phys. Lett. 95 033301

    [47]

    Rao A, Wilson M W, Hodgkiss J M, Albert-Seifried S, Basler H, Friend R H 2010 J. Am. Chem. Soc. 132 12698

    [48]

    Schwerin A F, Johnson J C, Smith M B, Sreearunothai P, Popovic D, Černyý J ii, Havlas Z, Paci I, Akdag A, MacLeod M K 2009 J. Phys. Chem. A 114 1457

    [49]

    Johnson J C, Nozik A J, Michl J 2010 J. Am. Chem. Soc. 132 16302

    [50]

    Akdag A, Havlas Z k, Michl J 2012 J. Am. Chem. Soc. 134 14624

    [51]

    Eaton S W, Shoer L E, Karlen S D, Dyar S M, Margulies E A, Veldkamp B S, Ramanan C, Hartzler D A, Savikhin S, Marks T J 2013 J. Am. Chem. Soc. 135 14701

    [52]

    Mller A M, Avlasevich Y S, Mllen K, Bardeen C J 2006 Chem. Phys. Lett. 421 518

    [53]

    Johnson J C, Nozik A J, Michl J 2013 Acc. Chem. Res. 46 1290

    [54]

    Thorsmølle V K, Averitt R D, Demsar J, Smith D, Tretiak S, Martin R, Chi X, Crone B, Ramirez A, Taylor A 2009 Phys. Rev. Lett. 102 017401

    [55]

    Roberts S T, McAnally R E, Mastron J N, Webber D H, Whited M T, Brutchey R L, Thompson M E, Bradforth S E 2012 J. Am. Chem. Soc. 134 6388

    [56]

    Geacintov N, Pope M 1969 J. Chem. Phys. 50 814

    [57]

    Vaubel G, Baessler H 1970 Mol. Cryst. Liq. Cryst. 12 47

    [58]

    Groff R, Avakian P, Merrifield R 1970 Phys. Rev. B 1 815

    [59]

    Ghosh A K, Feng T 1973 J. Appl. Phys. 44 2781

    [60]

    Sokolik I, Frankevich E 1974 Sov. Phys. Usp 16 687

    [61]

    Najafov H, Lee B, Zhou Q, Feldman L, Podzorov V 2010 Nat. Mater. 9 938

    [62]

    Silva C 2010 Nat. Mater. 9 884

    [63]

    Marciniak H, Fiebig M, Huth M, Schiefer S, Nickel B, Selmaier F, Lochbrunner S 2007 Phys. Rev. Lett. 99 176402

    [64]

    Grumstrup E M, Johnson J C, Damrauer N H 2010 Phys. Rev. Lett. 105 257403

    [65]

    Camposeo A, Polo M, Tavazzi S, Silvestri L, Spearman P, Cingolani R, Pisignano D 2010 Phys. Rev. B 81 033306

    [66]

    Rao A, Wilson M W, Albert-Seifried S, Di Pietro R, Friend R H 2011 Phys. Rev. B 84 195411

    [67]

    Wilson M W, Rao A, Clark J, Kumar R S S, Brida D, Cerullo G, Friend R H 2011 J. Am. Chem. Soc. 133 11830

    [68]

    Burdett J J, Gosztola D, Bardeen C J 2011 J. Chem. Phys. 135 214508

    [69]

    Tayebjee M J, Clady R G, Schmidt T W 2013 Phys. Chem. Chem. Phys. 15 14797

    [70]

    Wilson M W, Rao A, Johnson K, Ge 靗 inas S, di Pietro R, Clark J, Friend R H 2013 J. Am. Chem. Soc. 135 16680

    [71]

    Wilson M W, Rao A, Ehrler B, Friend R H 2013 Acc. Chem. Res. 46 1330

    [72]

    Birech Z, Schwoerer M, Schmeiler T, Pflaum J, Schwoerer H 2014 J. Chem. Phys. 140 114501

    [73]

    Zhang B, Zhang C F, Xu Y Q, Wang R, He B, Liu Y L, Zhang S M, Wang X Y, Xiao M 2014 J. Chem. Phys. 141 244303

    [74]

    Wu Y S, Liu K, Liu H Y, Zhang Y, Zhang H L, Yao J N, Fu H B 2014 J. Phys. Chem. Lett. 5 3451

    [75]

    Tomkiewicz Y, Groff R, Avakian P 1971 J. Chem. Phys. 54 4504

    [76]

    Swenberg C, Ratner M, Geacintov N 1974 J. Chem. Phys. 60 2152

    [77]

    Kepler R 1960 Phys. Rev. 119 1226

    [78]

    Helfrich W, Schneider W 1965 Phys. Rev. Lett. 14 229

    [79]

    Marciniak H, Pugliesi I, Nickel B, Lochbrunner S 2009 Phys. Rev. B 79 235318

    [80]

    Johnson J C, Reilly III T H, Kanarr A C, van de Lagemaat J 2009 J. Phys. Chem. C 113 6871

    [81]

    Kuhlman T S, Kongsted J, Mikkelsen K V, Møller K B, Sølling T I 2010 J. Am. Chem. Soc. 132 3431

    [82]

    Chabr M, Wild U, Fnfschilling J, Zschokke-Gränacher I 1981 Chem. Phys. 57 425

    [83]

    Burdett J J, Bardeen C J 2012 J. Am. Chem. Soc. 134 8597

    [84]

    Suna A 1970 Phys. Rev. B 1 1716

    [85]

    Voigt M, Langner A, Schouwink P, Lupton J, Mahrt R, Sokolowski M 2007 J. Chem. Phys. 127 114705

    [86]

    Burdett J J, Bardeen C J 2013 Acc. Chem. Res. 46 1312

    [87]

    Lim S H, Bjorklund T G, Spano F C, Bardeen C J 2004 Phys. Rev. Lett. 92 107402

    [88]

    Greyson E C, Stepp B R, Chen X D, Schwerin A F, Paci I, Smith M B, Akdag A, Johnson J C, Nozik A J, Michl J 2009 J. Phys. Chem. B 114 14223

    [89]

    Venuti E, Della Valle R G, Farina L, Brillante A, Masino M, Girlando A 2004 Phys. Rev. B 70 104106

    [90]

    Wappelt A, Bergmann A, Napiwotzki A, Eichler H, Jpner H, Kummrow A, Lau A, Woggon S 1995 J. Appl. Phys. 78 5192

    [91]

    Smith A, Weiss C 1972 Chem. Phys. Lett. 14 507

    [92]

    Jadhav P J, Brown P R, Thompson N, Wunsch B, Mohanty A, Yost S R, Hontz E, Van Voorhis T, Bawendi M G, Bulović V 2012 Adv. Mater. 24 6169

    [93]

    Ehrler B, Walker B J, Böhm M L, Wilson M W, Vaynzof Y, Friend R H, Greenham N C 2012 Nat. Commun. 3 1019

    [94]

    Ehrler B, Wilson M W, Rao A, Friend R H, Greenham N C 2012 Nano Lett. 12 1053

    [95]

    Jadhav P J, Mohanty A, Sussman J, Lee J Y, Baldo M A 2011 Nano Lett. 11 1495

    [96]

    Yoo S, Domercq B, Kippelen B 2004 Appl. Phys. Lett. 85 5427

    [97]

    Yoo S, Potscavage Jr W J, Domercq B, Han S H, Li T D, Jones S C, Szoszkiewicz R, Levi D, Riedo E, Marder S R 2007 Solid-State Electron. 51 1367

    [98]

    Thompson N J, Congrefle D N, Goldberg D, Menon V M, Baldo M A 2013 Appl. Phys. Lett. 103 263302

    [99]

    Pandey A K, Dabos-Seignon S, Nunzi J M 2006 Appl. Phys. Lett. 89 113506

    [100]

    Monestier F, Pandey A K, Simon J J, Torchio P, Escoubas L, Nunzi J M 2007 J. Appl. Phys. 102 034512

    [101]

    Griffith O L, Anthony J E, Jones A G, Lichtenberger D L 2009 J. Am. Chem. Soc. 132 580

    [102]

    Jasieniak J, Califano M, Watkins S E 2011 ACS nano 5 5888

    [103]

    Blumstengel S, Sadofev S, Xu C, Puls J, Henneberger F 2006 Phys. Rev. Lett. 97 237401

    [104]

    Zhang Q, Atay T, Tischler J R, Bradley M S, Bulovi V, Nurmikko A 2007 Nat. Nanotechnol. 2 555

    [105]

    Agranovich V, Gartstein Y N, Litinskaya M 2011 Chem. Rev. 111 5179

    [106]

    Chu C W, Shao Y, Shrotriya V, Yang Y 2005 Appl. Phys. Lett. 86 243506

    [107]

    Shao Y, Sista S, Chu C W, Sievers D, Yang Y 2007 Appl. Phys. Lett. 90 103501

    [108]

    Reusswig P D, Congrefle D N, Thompson N J, Baldo M A 2012 Appl. Phys. Lett. 101 113304

    [109]

    Shaheen S E, Radspinner R, Peyghambarian N, Jabbour G E 2001 Appl. Phys. Lett. 79 2996

  • [1]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510

    [2]

    Wrfel P 1997 Sol. Energy Mater. Sol. Cells 46 43

    [3]

    O’Dwyer M F, Humphrey T, Lewis R A, Zhang C 2008 Microelectron. J. 39 656

    [4]

    Conibeer G, Jiang C W, König D, Shrestha S, Walsh T, Green M 2008 Thin Solid Films 516 6968

    [5]

    Ellingson R J, Beard M C, Johnson J C, Yu P R, Micic O I, Nozik A J, Shabaev A, Efros A L 2005 Nano Lett. 5 865

    [6]

    Beard M C, Knutsen K P, Yu P R, Luther J M, Song Q, Metzger W K, Ellingson R J, Nozik A J 2007 Nano Lett. 7 2506

    [7]

    Nozik A J, Beard M C, Luther J M, Law M, Ellingson R J, Johnson J C 2010 Chem. Rev. 110 6873

    [8]

    Hanna M, Nozik A 2006 J. Appl. Phys. 100 074510

    [9]

    Zhang B, Zhang C F, Wang R, Tan Z A, Liu Y L, Guo W, Zhai X L, Cao Y, Wang X Y, Xiao M 2014 J. Phys. Chem. Lett. 5 3462

    [10]

    Schaller R D, Klimov V I 2004 Phys. Rev. Lett. 92 186601

    [11]

    Xiao J, Wang Y, Hua Z, Wang X Y, Zhang C F, Xiao M 2012 Nat. Commun. 3 1170

    [12]

    Smith M B, Michl J 2010 Chem. Rev. 110 6891

    [13]

    Smith M B, Michl J 2013 Annu. Rev. Phys. Chem. 64 361

    [14]

    Singh S, Jones W, Siebrand W, Stoicheff B, Schneider W 1965 J. Chem. Phys. 42 330

    [15]

    Swenberg C, Stacy W 1968 Chem. Phys. Lett. 2 327

    [16]

    Merrifield R, Avakian P, Groff R 1969 Chem. Phys. Lett. 3 155

    [17]

    Geacintov N, Pope M, Vogel F 1969 Phys. Rev. Lett. 22 593

    [18]

    Merrifield R 1971 Pure Appl. Chem. 27 481

    [19]

    Jundt C, Klein G, Sipp B, Le Moigne J, Joucla M, Villaeys A 1995 Chem. Phys. Lett. 241 84

    [20]

    Mller A M, Avlasevich Y S, Schoeller W W, Mllen K, Bardeen C J 2007 J. Am. Chem. Soc. 129 14240

    [21]

    Ma L, Zhang K K, Kloc C, Sun H D, Michel-Beyerle M E, Gurzadyan G G 2012 PCCP 14 8307

    [22]

    Piland G B, Burdett J J, Kurunthu D, Bardeen C J 2013 J. Phys. Chem. C 117 1224

    [23]

    Walker B J, Musser A J, Beljonne D, Friend R H 2013 Nat. Chem. 5 1019

    [24]

    Kraabel B, Hulin D, Aslangul C, Lapersonne-Meyer C, Schott M 1998 Chem. Phys. 227 83

    [25]

    Lanzani G, Stagira S, Cerullo G, De Silvestri S, Comoretto D, Moggio I, Cuniberti C, Musso G, Dellepiane G 1999 Chem. Phys. Lett. 313 525

    [26]

    Lanzani G, Cerullo G, Zavelani-Rossi M, De Silvestri S, Comoretto D, Musso G, Dellepiane G 2001 Phys. Rev. Lett. 87 187402

    [27]

    Guo J M, Ohkita H, Benten H, Ito S 2009 J. Am. Chem. Soc. 131 16869

    [28]

    Wang C, Tauber M J 2010 J. Am. Chem. Soc. 132 13988

    [29]

    Lee J, Jadhav P, Reusswig P D, Yost S R, Thompson N J, Congrefle D N, Hontz E, Van Voorhis T, Baldo M A 2013 Acc. Chem. Res. 46 1300

    [30]

    Congrefle D N, Lee J, Thompson N J, Hontz E, Yost S R, Reusswig P D, Bahlke M E, Reineke S, Van Voorhis T, Baldo M A 2013 Science 340 334

    [31]

    Tabachnyk M, Ehrler B, Gélinas S, Böhm M L, Walker B J, Musselman K P, Greenham N C, Friend R H, Rao A 2014 Nat. Mater. 13 1033

    [32]

    Merrifield R 1968 J. Chem. Phys. 48 4318

    [33]

    Johnson R, Merrifield R 1970 Phys. Rev. B 1 896

    [34]

    Greyson E C, Vura-Weis J, Michl J, Ratner M A 2010 J. Phys. Chem. B 114 14168

    [35]

    Zimmerman P M, Zhang Z Y, Musgrave C B 2010 Nat. Chem. 2 648

    [36]

    Zimmerman P M, Bell F, Casanova D, Head-Gordon M 2011 J. Am. Chem. Soc. 133 19944

    [37]

    Zimmerman P M, Musgrave C B, Head-Gordon M 2013 Acc. Chem. Res. 46 1339

    [38]

    Chan W L, Ligges M, Jailaubekov A, Kaake L, Miaja-Avila L, Zhu X Y 2011 Science 334 1541

    [39]

    Chan W L, Ligges M, Zhu X Y 2012 Nat. Chem. 4 840

    [40]

    Chan W L, Berkelbach T C, Provorse M R, Monahan N R, Tritsch J R, Hybertsen M S, Reichman D R, Gao J L, Zhu X Y 2013 Acc. Chem. Res. 46 1321

    [41]

    Yost S R, Lee J Y, Wilson M W, Wu T, McMahon D P, Parkhurst R R, Thompson N J, Congrefle D N, Rao A, Johnson K 2014 Nat. Chem. 6 492

    [42]

    Beljonne D, Yamagata H, Brédas J, Spano F, Olivier Y 2013 Phys. Rev. Lett. 110 226402

    [43]

    Busby E, Xia J L, Wu Q, Low J Z, Song R, Miller J R, Zhu X Y, Campos L M, Sfeir M Y 2015 Nat. Mater. 14 426

    [44]

    Paci I, Johnson J C, Chen X D, Rana G, Popovic D, David D E, Nozik A J, Ratner M A, Michl J 2006 J. Am. Chem. Soc. 128 16546

    [45]

    Burdett J J, Mller A M, Gosztola D, Bardeen C J 2010 J. Chem. Phys. 133 144506

    [46]

    Lee J, Jadhav P, Baldo M 2009 Appl. Phys. Lett. 95 033301

    [47]

    Rao A, Wilson M W, Hodgkiss J M, Albert-Seifried S, Basler H, Friend R H 2010 J. Am. Chem. Soc. 132 12698

    [48]

    Schwerin A F, Johnson J C, Smith M B, Sreearunothai P, Popovic D, Černyý J ii, Havlas Z, Paci I, Akdag A, MacLeod M K 2009 J. Phys. Chem. A 114 1457

    [49]

    Johnson J C, Nozik A J, Michl J 2010 J. Am. Chem. Soc. 132 16302

    [50]

    Akdag A, Havlas Z k, Michl J 2012 J. Am. Chem. Soc. 134 14624

    [51]

    Eaton S W, Shoer L E, Karlen S D, Dyar S M, Margulies E A, Veldkamp B S, Ramanan C, Hartzler D A, Savikhin S, Marks T J 2013 J. Am. Chem. Soc. 135 14701

    [52]

    Mller A M, Avlasevich Y S, Mllen K, Bardeen C J 2006 Chem. Phys. Lett. 421 518

    [53]

    Johnson J C, Nozik A J, Michl J 2013 Acc. Chem. Res. 46 1290

    [54]

    Thorsmølle V K, Averitt R D, Demsar J, Smith D, Tretiak S, Martin R, Chi X, Crone B, Ramirez A, Taylor A 2009 Phys. Rev. Lett. 102 017401

    [55]

    Roberts S T, McAnally R E, Mastron J N, Webber D H, Whited M T, Brutchey R L, Thompson M E, Bradforth S E 2012 J. Am. Chem. Soc. 134 6388

    [56]

    Geacintov N, Pope M 1969 J. Chem. Phys. 50 814

    [57]

    Vaubel G, Baessler H 1970 Mol. Cryst. Liq. Cryst. 12 47

    [58]

    Groff R, Avakian P, Merrifield R 1970 Phys. Rev. B 1 815

    [59]

    Ghosh A K, Feng T 1973 J. Appl. Phys. 44 2781

    [60]

    Sokolik I, Frankevich E 1974 Sov. Phys. Usp 16 687

    [61]

    Najafov H, Lee B, Zhou Q, Feldman L, Podzorov V 2010 Nat. Mater. 9 938

    [62]

    Silva C 2010 Nat. Mater. 9 884

    [63]

    Marciniak H, Fiebig M, Huth M, Schiefer S, Nickel B, Selmaier F, Lochbrunner S 2007 Phys. Rev. Lett. 99 176402

    [64]

    Grumstrup E M, Johnson J C, Damrauer N H 2010 Phys. Rev. Lett. 105 257403

    [65]

    Camposeo A, Polo M, Tavazzi S, Silvestri L, Spearman P, Cingolani R, Pisignano D 2010 Phys. Rev. B 81 033306

    [66]

    Rao A, Wilson M W, Albert-Seifried S, Di Pietro R, Friend R H 2011 Phys. Rev. B 84 195411

    [67]

    Wilson M W, Rao A, Clark J, Kumar R S S, Brida D, Cerullo G, Friend R H 2011 J. Am. Chem. Soc. 133 11830

    [68]

    Burdett J J, Gosztola D, Bardeen C J 2011 J. Chem. Phys. 135 214508

    [69]

    Tayebjee M J, Clady R G, Schmidt T W 2013 Phys. Chem. Chem. Phys. 15 14797

    [70]

    Wilson M W, Rao A, Johnson K, Ge 靗 inas S, di Pietro R, Clark J, Friend R H 2013 J. Am. Chem. Soc. 135 16680

    [71]

    Wilson M W, Rao A, Ehrler B, Friend R H 2013 Acc. Chem. Res. 46 1330

    [72]

    Birech Z, Schwoerer M, Schmeiler T, Pflaum J, Schwoerer H 2014 J. Chem. Phys. 140 114501

    [73]

    Zhang B, Zhang C F, Xu Y Q, Wang R, He B, Liu Y L, Zhang S M, Wang X Y, Xiao M 2014 J. Chem. Phys. 141 244303

    [74]

    Wu Y S, Liu K, Liu H Y, Zhang Y, Zhang H L, Yao J N, Fu H B 2014 J. Phys. Chem. Lett. 5 3451

    [75]

    Tomkiewicz Y, Groff R, Avakian P 1971 J. Chem. Phys. 54 4504

    [76]

    Swenberg C, Ratner M, Geacintov N 1974 J. Chem. Phys. 60 2152

    [77]

    Kepler R 1960 Phys. Rev. 119 1226

    [78]

    Helfrich W, Schneider W 1965 Phys. Rev. Lett. 14 229

    [79]

    Marciniak H, Pugliesi I, Nickel B, Lochbrunner S 2009 Phys. Rev. B 79 235318

    [80]

    Johnson J C, Reilly III T H, Kanarr A C, van de Lagemaat J 2009 J. Phys. Chem. C 113 6871

    [81]

    Kuhlman T S, Kongsted J, Mikkelsen K V, Møller K B, Sølling T I 2010 J. Am. Chem. Soc. 132 3431

    [82]

    Chabr M, Wild U, Fnfschilling J, Zschokke-Gränacher I 1981 Chem. Phys. 57 425

    [83]

    Burdett J J, Bardeen C J 2012 J. Am. Chem. Soc. 134 8597

    [84]

    Suna A 1970 Phys. Rev. B 1 1716

    [85]

    Voigt M, Langner A, Schouwink P, Lupton J, Mahrt R, Sokolowski M 2007 J. Chem. Phys. 127 114705

    [86]

    Burdett J J, Bardeen C J 2013 Acc. Chem. Res. 46 1312

    [87]

    Lim S H, Bjorklund T G, Spano F C, Bardeen C J 2004 Phys. Rev. Lett. 92 107402

    [88]

    Greyson E C, Stepp B R, Chen X D, Schwerin A F, Paci I, Smith M B, Akdag A, Johnson J C, Nozik A J, Michl J 2009 J. Phys. Chem. B 114 14223

    [89]

    Venuti E, Della Valle R G, Farina L, Brillante A, Masino M, Girlando A 2004 Phys. Rev. B 70 104106

    [90]

    Wappelt A, Bergmann A, Napiwotzki A, Eichler H, Jpner H, Kummrow A, Lau A, Woggon S 1995 J. Appl. Phys. 78 5192

    [91]

    Smith A, Weiss C 1972 Chem. Phys. Lett. 14 507

    [92]

    Jadhav P J, Brown P R, Thompson N, Wunsch B, Mohanty A, Yost S R, Hontz E, Van Voorhis T, Bawendi M G, Bulović V 2012 Adv. Mater. 24 6169

    [93]

    Ehrler B, Walker B J, Böhm M L, Wilson M W, Vaynzof Y, Friend R H, Greenham N C 2012 Nat. Commun. 3 1019

    [94]

    Ehrler B, Wilson M W, Rao A, Friend R H, Greenham N C 2012 Nano Lett. 12 1053

    [95]

    Jadhav P J, Mohanty A, Sussman J, Lee J Y, Baldo M A 2011 Nano Lett. 11 1495

    [96]

    Yoo S, Domercq B, Kippelen B 2004 Appl. Phys. Lett. 85 5427

    [97]

    Yoo S, Potscavage Jr W J, Domercq B, Han S H, Li T D, Jones S C, Szoszkiewicz R, Levi D, Riedo E, Marder S R 2007 Solid-State Electron. 51 1367

    [98]

    Thompson N J, Congrefle D N, Goldberg D, Menon V M, Baldo M A 2013 Appl. Phys. Lett. 103 263302

    [99]

    Pandey A K, Dabos-Seignon S, Nunzi J M 2006 Appl. Phys. Lett. 89 113506

    [100]

    Monestier F, Pandey A K, Simon J J, Torchio P, Escoubas L, Nunzi J M 2007 J. Appl. Phys. 102 034512

    [101]

    Griffith O L, Anthony J E, Jones A G, Lichtenberger D L 2009 J. Am. Chem. Soc. 132 580

    [102]

    Jasieniak J, Califano M, Watkins S E 2011 ACS nano 5 5888

    [103]

    Blumstengel S, Sadofev S, Xu C, Puls J, Henneberger F 2006 Phys. Rev. Lett. 97 237401

    [104]

    Zhang Q, Atay T, Tischler J R, Bradley M S, Bulovi V, Nurmikko A 2007 Nat. Nanotechnol. 2 555

    [105]

    Agranovich V, Gartstein Y N, Litinskaya M 2011 Chem. Rev. 111 5179

    [106]

    Chu C W, Shao Y, Shrotriya V, Yang Y 2005 Appl. Phys. Lett. 86 243506

    [107]

    Shao Y, Sista S, Chu C W, Sievers D, Yang Y 2007 Appl. Phys. Lett. 90 103501

    [108]

    Reusswig P D, Congrefle D N, Thompson N J, Baldo M A 2012 Appl. Phys. Lett. 101 113304

    [109]

    Shaheen S E, Radspinner R, Peyghambarian N, Jabbour G E 2001 Appl. Phys. Lett. 79 2996

  • [1] Feng Wei, Gao Zhong-Kuo. Simulation of physical properties of organic photovoltaic cell. Acta Physica Sinica, 2008, 57(4): 2567-2573. doi: 10.7498/aps.57.2567
    [2] Zhang Ke, Hu Zi-Yang, Huang Li-Ke, Xu Jie, Zhang Jing, Zhu Yue-Jin. ZnO:Al textured films for improved performance in organic photovoltaics. Acta Physica Sinica, 2015, 64(17): 178801. doi: 10.7498/aps.64.178801
    [3] KATSUMI YOSHINO, FENG WEI, CAO MENG, WEI WEI, WU HONG-CAI, WAN MEI-XIANG. PROPERTIES OF CONDUCTING POLYMER DONOR-ACCEPTOR COMPOSITE FILMS AND PHOTOVOLTAIC CHARACTERISTICS OF JUNCTION DEVICES. Acta Physica Sinica, 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
    [4] Yang Shao-Peng, Li Na, Li Guang, Shi Jiang-Bo, Li Xiao-Wei, Fu Guang-Sheng. Effect of mixed solvents on P3HT:PCBM based solar cell. Acta Physica Sinica, 2013, 62(1): 014702. doi: 10.7498/aps.62.014702
    [5] Qiao Shi-Zhu, Zhao Jun-Qing, Jia Zhen-Feng, Zhang Ning-Yu, Wang Feng-Xiang, Fu Gang, Ji Yan-Ju. Formation and manipulation of singlet and triplet in spin-polarized organic light-emitting devices. Acta Physica Sinica, 2010, 59(5): 3564-3570. doi: 10.7498/aps.59.3564
    [6] Liu Jun, Hou Yan-Bing, Sun Xin, Shi Quan-Min, Li Yan, Jin Hui, Lu Jing. The influence of electric field introduced polymer molecular orientation on the formation cross-section of singlet and triplet excitons in PLED. Acta Physica Sinica, 2007, 56(5): 2845-2851. doi: 10.7498/aps.56.2845
    [7] Li Bo, Shao Jian-Feng. Investigation on Schottky contacts in organic thin film photovoltaic devices by transient photocurrent. Acta Physica Sinica, 2012, 61(7): 077301. doi: 10.7498/aps.61.077301
    [8] Zheng Jia-Jin, Lu Yun-Qing, Li Pei-Li. Optical nonlinearities of excited state intramolecular proton transfer molecule HBT. Acta Physica Sinica, 2010, 59(7): 4687-4693. doi: 10.7498/aps.59.4687
    [9] An Tao, Tu Chuan-Bao, Gong Wei. Organic color photodetectors based on tri-phase bulk heterojunction with wide sectrum and photoelectronic mltiplication. Acta Physica Sinica, 2018, 67(19): 198503. doi: 10.7498/aps.67.20180502
    [10] Zheng Rui-Lun, Wu Qiang. Influence of layers’ mutual effect and radius on electronic energy of spherical nanometric system. Acta Physica Sinica, 2008, 57(8): 5191-5197. doi: 10.7498/aps.57.5191
    [11] Gao Bo-Wen, Gao Chao, Que Wen-Xiu, Wei Wei. Recent development of polymer/fullerene photovoltaic cells. Acta Physica Sinica, 2012, 61(19): 194213. doi: 10.7498/aps.61.194213
    [12] Exciton-polaron interaction in blue fluorescent organic light-emitting diodes. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191930
    [13] Xu Zhong-Hua, Chen Wei-Bing, Ye Wei-Qiong, Yang Wei-Feng. A Study of tandem structure organic solar cells composed of polymer and small molecular sub-cells. Acta Physica Sinica, 2014, 63(21): 218801. doi: 10.7498/aps.63.218801
    [14] Wu Hong-Lin, Song Yun-Fei, Wang Yang, Yu Guo-Yang, Yang Yan-Qiang. Photodissociation dynamics of organic molecules in condensed phase by femtosecond transient grating spectroscopy. Acta Physica Sinica, 2017, 66(3): 033301. doi: 10.7498/aps.66.033301
    [15] Li Xue,  Wang Liang,  Xiong Jian-Qiao,  Shao Qiu-Ping,  Jiang Rong,  Chen Shu-Fen. Enhanced light absorption and device performances of organic photovoltaic devices with Au tetrahedra nanoparticles. Acta Physica Sinica, 2018, 67(24): 247201. doi: 10.7498/aps.67.20181502
    [16] Meng Wei-Min, Li Rong-Hua, Ma Chao-Zhu, Wang Run-Sheng, Xie Hong-Wei, Wang Ying, Ye Zao-Chen, Peng Ying-Quan. Investigation on the effect of cathode work function and exciton generation rate on the open-circuit voltage of single layer organic solar cell with Schottky contact. Acta Physica Sinica, 2010, 59(3): 2126-2130. doi: 10.7498/aps.59.2126
    [17] TAN WEI-SI, TAN WEI-HAN, ZHAO DONG-SHENG, LIU REN-HONG. INSTANTANEOUS RESONANCE FLUORESCENCE SPECTRUM OF A TWO LEVEL ATOMIC SYSTEM DRIVEN BY AN EXPONENTIAL BY DCEAYING FIELD. Acta Physica Sinica, 1992, 41(3): 413-427. doi: 10.7498/aps.41.413
    [18] Jin Shi-Qi, Xu Zheng, Zhao Su-Ling, Zhao Jiao, Li Yang, Deng Li-Juan. Efficient organic ternary solar cells based on PTB7 and PC70BM with Bis-PC70BM. Acta Physica Sinica, 2016, 65(2): 028801. doi: 10.7498/aps.65.028801
    [19] Zhang Zhao-Hui, Han Kui, Cao Juan, Wang Fan, Yang Li-Juan. The influence of the structure of the organic ultra-film on friction. Acta Physica Sinica, 2012, 61(2): 028701. doi: 10.7498/aps.61.028701
    [20] Zhou Wen-Yuan, Tian Jian-Guo, Zang Wei-Ping, Liu Zhi-Bo, Zhang Chun-Ping, Zhang Guang-Yin. Transient thermally induced optical nonlinearities in Kerr media. Acta Physica Sinica, 2004, 53(2): 620-625. doi: 10.7498/aps.53.620
  • Citation:
Metrics
  • Abstract views:  1308
  • PDF Downloads:  474
  • Cited By: 0
Publishing process
  • Received Date:  09 February 2015
  • Accepted Date:  18 March 2015
  • Published Online:  05 May 2015

Ultrafast spectroscopic study for singlet fission

  • 1. National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China;
  • 2. Department of Science, China University of Petroleum (Huadong), Qingdao 266580, China;
  • 3. Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
Fund Project:  Project supported by the National Basic Research Program of China (Grant Nos. 2013CB932903, 2012CB921801), and the National Natural Science Foundation of China (Grant Nos. 91233103, 61108001, 11227406, 11321063).

Abstract: Singlet fission is a spin-allowed process that creates two triplet excitons from one photo-excited singlet exciton in organic semiconductors. This process of carrier multiplication holds the great potential to break the theoretical efficiency limit in single-junction solar cells by making better use of high-energy photons, while capturing lower-energy photons in the usual style. Photovoltaic devices based on singlet fission have achieved external quantum efficiencies in excess of 100%. In this paper, we first introduce the basic concept about singlet fission and review the history of the field briefly. Then, we report some reflent advances in the reflearch of singlet fission progress with the combination of our group’s productions. Tetracene and pentacene are chosen as typical polyacene materials for discuss. We describe how scientists make progresses in understanding the underlying physics in singlet fission process. The experimental methods of transient absorption spectra, time-resolved fluorescence spectra and time-resolved two-photon photoemission spectra render numerous results for analysis. Moreover, a survey about the debate on the direct or indirect mechanism with transient optical study is provided. It has been verified that multiexciton state intermediates in singlet fission process and the factors of energy level alignments, intermolecular interaction as well as lattice vibrations play a role in it. Last, we briefly summarize the implications of singlet fission in organic solar devices by introducing several composite architectures for singlet-fission photovoltaics. Designing efficient and cheap solar cells is the ultimate goal for understanding the intrinsic photophysics of singlet fission. To obtain high efficiencies, it is important to adapt proper materials and new organic/inorganic architectures may become a promising direction. Also, finding a way for efficient triplet exciton dissociation should be considered seriously. It is believable that these guidelines can lead to the development of cheap and efficient fission-based devices.

Reference (109)

Catalog

    /

    返回文章
    返回