Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Non-uniformity study on readout circuit for uncooled IR detector

Yuan Hong-Hui Chen Yong-Ping

Non-uniformity study on readout circuit for uncooled IR detector

Yuan Hong-Hui, Chen Yong-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • For long line uncooled infrared detectors, the non-uniformity of different detecting elements is the key parameter in measuring the circuit performance. So far there have been few research reports in this area. Most uncooled infrared detector circuits require corresponding blind detector for readout circuit design, which increases the complexity of uncooled infrared detector. In addition, the performances of these circuits need to be further improved in practical applications. In order to achieve high performance readout of the long line uncooled infrared detectors, a kind of 160 element readout circuit based on current mirror is designed in this paper. The readout circuit is composed of current mirror input part, capacitor feedback transimpedance amplifier (CTIA), and correlated double sampling (CDS) output circuit. The circuit is fabricated by using the 0.5 micron technology. The non-uniformity of circuit is obviously improved by reasonable parameter setting and current mirror circuit layout. Transconductance amplifier CTIA with capacitance negative feedback is used in the circuit. The integral capacitor consists of three capacitors whose capacitances are 10 pF, 20 pF and 20 pF respectively, thus the circuit can realize different integration capacitances, which forms different magnifications. The circuit can meet different response rates of uncooled detectors. Folded-cascode structure is adopted as the CMOS differential amplifier. The open loop gain is over 80 dB. This single-state folded-cascode construct can overcome the two-stage amplifier’s disadvantages, which easily leads to oscillations. The CDS N SF (source follow) and P SF are adopted as the circuit output, the output swing can easily be greater than 2 V. On average, the CDS N SF and P SF power consumptions are very low. So the total power consumption of 160 line circuit is lower than 100 mW. In the test, the non-uniformity of the readout circuit decreases from 10% to 1%. This result is in accordance with simulation result on non-uniformity. The other test results of total power consumption and the output amplitude also agree with simulation results. The readout circuit has good noise characteristics and the output noise is lower than 1 mV. When the readout circuit and uncooled infrared detector are connected, the infrared signal can be well read out. When the integration time is 20 μups, the device response is 0.294 mV/Ω. The overall system performance is very good. This circuit design based on current mirror has laid the technical foundation for developing readout circuit of the very large scale uncooled infrared detector in the future.
    • Funds: Project supported by China Academy of Sciences (Grant No. 61501060305).
    [1]

    Cao J M, Chen Z J, Lu W 2010 J. Infrared Millim. W. 29 97 (in Chinese) [曹君敏, 陈中建, 鲁文高 2010 红外与毫米波学报 29 97]

    [2]

    Qin L, Jiang Y D, Lu J 2006 Foreign Electronic Measurement Technology 25 32 (in Chinese) [秦良, 蒋亚东, 吕坚 2006 国外电子测量技术 25 32]

    [3]

    Yuan H H, Chen Y P 2014 Infrared and Laser Engineering 43 762 (in Chinese) [袁红辉, 陈永平 2014 红外与激光工程 43 762]

    [4]

    Liu M, Xu X F, Wang Y L 2013 Acta phys. Sin. 62 188501 (in Chinese) [刘明, 徐小峰, 王永良 2013 物理学报 62 188501]

    [5]

    Zheng G F, Pei Y B, Wang X, Zheng J Y, Sun D H 2014 Chin. Phys. B 23 66102

    [6]

    Huang J, Zhao Q, Yang H, Dong J R, Zhang H Y 2013 Chin. Phys. B 22 127307

    [7]

    Chen Q, Yi X J, Yang Y, Yi L 2006 Int. J. Infrared Millim. W. 27 1281

    [8]

    Alam M S, Predina J P 2003 Opt. Eng. 42 3491

    [9]

    Weiler D, Hochschulz F, Wurfel D 2014 Infrared Technology and Applications XL, Baltimore MD USA May 5 2014 p90701

    [10]

    Ayers S, Gillis K D, Lindau M 2007 IEEE T. Circuits-I 54 736

    [11]

    Dsouza A I, Dawson L C, Staller C, Wijewar P S, Dewames R E, Mclevige W V 1997 J. Electron. Mater. 29 630

    [12]

    Yoon N Y, Kim B H, Lee H C, Kim C K 1999 Electron. Lett. 35 1507

    [13]

    Kulah H, Akin T 2003 IEEE T. Circuit-II 50 181

    [14]

    Lee I I 2010 Infrared Phys. Techn. 53 140

    [15]

    Hsieh C C, Wu C Y, Jih F W, Sun T P 1997 IEEE T. CIRC. SYST. VID. 7 594

    [16]

    Yu T H, Wu C Y, Chin Y C, Chen P Y, Chi F W, Luo J J 2000 IEEE International Symposium on Circuits and Systems, Geneva Switzerland, May 28-31, 2000 p493

    [17]

    Hsieh C C, Wu C Y, Sun T P, Jih F W, Cherng Y T 1998 IEEE J. SOLID-ST. CIRC. 33 1188

    [18]

    Sang G K, Doo H W, Hee C L 2005 IEEE T. CIRCUITS-II 52 553

    [19]

    Karim S K, Nathan A 2001 IEEE Electr. Device L. 22 469

    [20]

    Yuan H H, Yuan J H, Wang J H 2005 Chinese Journal of Semiconductors 26 790 (in Chinese) [袁红辉, 袁剑辉, 王京辉 2005 半导体学报 26 790]

    [21]

    Byunghpk K, Hee C L 2002 Electron. Lett. 38 854

    [22]

    Chen L L, Xi N, Chen H Z, King W C 2010 IEEE Nanotechnology Materials and Devices Conference, Monterey, California, USA, Oct12-15, 2010 p230

    [23]

    Bhan R K, Gopal V, Saxena R S, Singh J P 2004 Infrared Phys. Techn. 45 81

    [24]

    Hsieh C C, Wu C Y, Sun T P 1997 IEEE J. SOLID-ST. CIRC. 32 1192

    [25]

    Kumar S, Butler D 2009 IEEE SENS. J. 9 411

    [26]

    Yvon D, Sushkov V, Bernard R, Bret J L, Cahan B, Cloue O 2002 Nucl. Instrum. Meth. A 481 306

  • [1]

    Cao J M, Chen Z J, Lu W 2010 J. Infrared Millim. W. 29 97 (in Chinese) [曹君敏, 陈中建, 鲁文高 2010 红外与毫米波学报 29 97]

    [2]

    Qin L, Jiang Y D, Lu J 2006 Foreign Electronic Measurement Technology 25 32 (in Chinese) [秦良, 蒋亚东, 吕坚 2006 国外电子测量技术 25 32]

    [3]

    Yuan H H, Chen Y P 2014 Infrared and Laser Engineering 43 762 (in Chinese) [袁红辉, 陈永平 2014 红外与激光工程 43 762]

    [4]

    Liu M, Xu X F, Wang Y L 2013 Acta phys. Sin. 62 188501 (in Chinese) [刘明, 徐小峰, 王永良 2013 物理学报 62 188501]

    [5]

    Zheng G F, Pei Y B, Wang X, Zheng J Y, Sun D H 2014 Chin. Phys. B 23 66102

    [6]

    Huang J, Zhao Q, Yang H, Dong J R, Zhang H Y 2013 Chin. Phys. B 22 127307

    [7]

    Chen Q, Yi X J, Yang Y, Yi L 2006 Int. J. Infrared Millim. W. 27 1281

    [8]

    Alam M S, Predina J P 2003 Opt. Eng. 42 3491

    [9]

    Weiler D, Hochschulz F, Wurfel D 2014 Infrared Technology and Applications XL, Baltimore MD USA May 5 2014 p90701

    [10]

    Ayers S, Gillis K D, Lindau M 2007 IEEE T. Circuits-I 54 736

    [11]

    Dsouza A I, Dawson L C, Staller C, Wijewar P S, Dewames R E, Mclevige W V 1997 J. Electron. Mater. 29 630

    [12]

    Yoon N Y, Kim B H, Lee H C, Kim C K 1999 Electron. Lett. 35 1507

    [13]

    Kulah H, Akin T 2003 IEEE T. Circuit-II 50 181

    [14]

    Lee I I 2010 Infrared Phys. Techn. 53 140

    [15]

    Hsieh C C, Wu C Y, Jih F W, Sun T P 1997 IEEE T. CIRC. SYST. VID. 7 594

    [16]

    Yu T H, Wu C Y, Chin Y C, Chen P Y, Chi F W, Luo J J 2000 IEEE International Symposium on Circuits and Systems, Geneva Switzerland, May 28-31, 2000 p493

    [17]

    Hsieh C C, Wu C Y, Sun T P, Jih F W, Cherng Y T 1998 IEEE J. SOLID-ST. CIRC. 33 1188

    [18]

    Sang G K, Doo H W, Hee C L 2005 IEEE T. CIRCUITS-II 52 553

    [19]

    Karim S K, Nathan A 2001 IEEE Electr. Device L. 22 469

    [20]

    Yuan H H, Yuan J H, Wang J H 2005 Chinese Journal of Semiconductors 26 790 (in Chinese) [袁红辉, 袁剑辉, 王京辉 2005 半导体学报 26 790]

    [21]

    Byunghpk K, Hee C L 2002 Electron. Lett. 38 854

    [22]

    Chen L L, Xi N, Chen H Z, King W C 2010 IEEE Nanotechnology Materials and Devices Conference, Monterey, California, USA, Oct12-15, 2010 p230

    [23]

    Bhan R K, Gopal V, Saxena R S, Singh J P 2004 Infrared Phys. Techn. 45 81

    [24]

    Hsieh C C, Wu C Y, Sun T P 1997 IEEE J. SOLID-ST. CIRC. 32 1192

    [25]

    Kumar S, Butler D 2009 IEEE SENS. J. 9 411

    [26]

    Yvon D, Sushkov V, Bernard R, Bret J L, Cahan B, Cloue O 2002 Nucl. Instrum. Meth. A 481 306

  • [1] Huang Jin, Zhong Zhong, Guo Wei-Dong, Lu Wei. Statistical features of aerodynamic effective roughness length over heterogeneous terrain. Acta Physica Sinica, 2013, 62(5): 054204. doi: 10.7498/aps.62.054204
    [2] Li Hong-Yu, Zhang Qiang. The relationship between surface energy balance unclosure and vertical sensible heat advection over the loess plateau. Acta Physica Sinica, 2010, 59(8): 5888-5895. doi: 10.7498/aps.59.5888
    [3] Guo Yin, Shu Bi-Fen, Wang Jing, Yang Qing-Chuan, Jiang Jing-Xiang, Huang Yan, Zhou Zheng-Long. Concentrating characteristics of Fresnel lens with prism secondary concentrator and optimization of high concentrating photovoltaic module with triple-junction cell. Acta Physica Sinica, 2018, 67(10): 108801. doi: 10.7498/aps.67.20172778
    [4] Liu Ming, Xu Xiao-Feng, Wang Yong-Liang, Zeng Jia, Li Hua, Qiu Yang, Zhang Shu-Lin, Zhang Guo-Feng, Kong Xiang-Yan, Xie Xiao-Ming. Study on transmission characteristics of matching transformer in DC superconducting quantum interference device readout. Acta Physica Sinica, 2013, 62(18): 188501. doi: 10.7498/aps.62.188501
    [5] Guan Peng-Fei, Wang Bing, Wu Yi-Cheng, Zhang Shan, Shang Bao-Shuang, Hu Yuan-Chao, Su Rui, Liu Qi. Heterogeneity: the soul of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [6] Wang Da-Wei, Liu Ting-Ting, Yang Hong, Jiang Hong-Bin, Gong Qi-Huang. . Acta Physica Sinica, 2002, 51(9): 2034-2037. doi: 10.7498/aps.51.2034
    [7] Wen Zhi-Wen, Qi Hui-Rong, Wang Yan-Feng, Sun Zhi-Jia, Zhang Yu-Lian, Wang Hai-Yun, Zhang Jian, Ouyang Qun, Chen Yuan-Bo, Li Yu-Hong. Readout method for two-dimensional multi-wire proportional chamber. Acta Physica Sinica, 2017, 66(7): 072901. doi: 10.7498/aps.66.072901
    [8] CHEN CHANG-HONG, YI XIN-JIAN, XIONG BI-FENG. INFRARED RESPONSIVITY OF UNCOOLED VO2-BASED THIN FILMS BOLOMETER. Acta Physica Sinica, 2001, 50(3): 450-452. doi: 10.7498/aps.50.450
    [9] Huo Yu-Kun, Oyangxiaoping, Li Zhen-Fu, Zhang Guo-Guang, Zhang Qian-Mei, Zhang Xian-Peng, Song Xian-Cai, Jia Huan-Yi, Lei Jian-Hua, Sun Yuan-Cheng. . Acta Physica Sinica, 2002, 51(7): 1502-1505. doi: 10.7498/aps.51.1502
    [10] PAN CHUAN-HONG. THE KINETIC THEORY ON rf WAVE CURRENT DRIVING IN NON-UNIFORM PLASMAS. Acta Physica Sinica, 1987, 36(3): 284-292. doi: 10.7498/aps.36.284
    [11] LU XUE-SHAN, LIANG JING-KUI. THE INHOMOGENEITY AND ANISOTROPY OF DEBYE CHARACTERISTIC TEMPERATURES. Acta Physica Sinica, 1981, 30(11): 1498-1507. doi: 10.7498/aps.30.1498
    [12] Zhang Jin-Peng, Zhang Yu-Shi, Wu Zhen-Sen, Zhang Yu-Sheng, Hu Rong-Xu. Inversion of regional range-dependent evaporation duct from radar sea clutter. Acta Physica Sinica, 2015, 64(12): 124101. doi: 10.7498/aps.64.124101
    [13] Zheng Li-Xia, Wu Jin, Zhang Xiu-Chuan, Tu Jun-Hong, Sun Wei-Feng, Gao Xin-Jiang. Sensing detection and quenching method for InGaAs single-photon detector. Acta Physica Sinica, 2014, 63(10): 104216. doi: 10.7498/aps.63.104216
    [14] Sun Tao, Chen Xing-Guo, Hu Xiao-Ning, Li Yan-Jin. Analysis of surface leakage and 1/f noise on long-wavelength infrared HgCdTe photodiodes. Acta Physica Sinica, 2005, 54(7): 3357-3362. doi: 10.7498/aps.54.3357
    [15] Xu Wen-Lan, Xiong Da-Yuan, Li Ning, Zhen Hong-Lou, Li Zhi-Feng, Lu Wei. Study of the dark current in very long wavelength quantum well infrared photodetectors. Acta Physica Sinica, 2007, 56(9): 5424-5428. doi: 10.7498/aps.56.5424
    [16] Zhao De-Gang, Zhou Mei, Chang Qing-Ying. A new method to reduce the dark current of GaN based Schottky barrier ultraviolet photodetector. Acta Physica Sinica, 2008, 57(4): 2548-2553. doi: 10.7498/aps.57.2548
    [17] Zi Jian, Yuan Xian-Zhang, Li Ning, Chen Xiao-Shuang, Shen Xue-Chu, Lu Wei. Photocurrent spectra of very long wavelength GaAs/AlGaAs quantum well infrared photodetector. Acta Physica Sinica, 2003, 52(2): 503-507. doi: 10.7498/aps.52.503
    [18] ZHANG WU, WANG YAN. A MULTI-RETARDATOR MODEL FOR OPTICALLY HET-EROGENEOUS COMPOSITE MATERIALS. Acta Physica Sinica, 1994, 43(8): 1380-1385. doi: 10.7498/aps.43.1380
    [19] Ju Xu-Dong, Dong Ming-Yi, Zhou Chuan-Xing, Dong Jing, Zhao Yu-Bin, Zhang Hong-Yu, Qi Hui-Rong, Ouyang Qun. Study of the two dimensional imaging performance for the gas electron multiplier using the resistive anode readout method. Acta Physica Sinica, 2017, 66(7): 072902. doi: 10.7498/aps.66.072902
    [20] АНТИВОЛНОВОДНОЕ РАСПРОСТРАНЕНИЕ В НЕОДНОРОДНОМ СЛОЕ. Acta Physica Sinica, 1961, 17(4): 180-190. doi: 10.7498/aps.17.180
  • Citation:
Metrics
  • Abstract views:  749
  • PDF Downloads:  131
  • Cited By: 0
Publishing process
  • Received Date:  02 October 2014
  • Accepted Date:  11 January 2015
  • Published Online:  05 June 2015

Non-uniformity study on readout circuit for uncooled IR detector

  • 1. Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Fund Project:  Project supported by China Academy of Sciences (Grant No. 61501060305).

Abstract: For long line uncooled infrared detectors, the non-uniformity of different detecting elements is the key parameter in measuring the circuit performance. So far there have been few research reports in this area. Most uncooled infrared detector circuits require corresponding blind detector for readout circuit design, which increases the complexity of uncooled infrared detector. In addition, the performances of these circuits need to be further improved in practical applications. In order to achieve high performance readout of the long line uncooled infrared detectors, a kind of 160 element readout circuit based on current mirror is designed in this paper. The readout circuit is composed of current mirror input part, capacitor feedback transimpedance amplifier (CTIA), and correlated double sampling (CDS) output circuit. The circuit is fabricated by using the 0.5 micron technology. The non-uniformity of circuit is obviously improved by reasonable parameter setting and current mirror circuit layout. Transconductance amplifier CTIA with capacitance negative feedback is used in the circuit. The integral capacitor consists of three capacitors whose capacitances are 10 pF, 20 pF and 20 pF respectively, thus the circuit can realize different integration capacitances, which forms different magnifications. The circuit can meet different response rates of uncooled detectors. Folded-cascode structure is adopted as the CMOS differential amplifier. The open loop gain is over 80 dB. This single-state folded-cascode construct can overcome the two-stage amplifier’s disadvantages, which easily leads to oscillations. The CDS N SF (source follow) and P SF are adopted as the circuit output, the output swing can easily be greater than 2 V. On average, the CDS N SF and P SF power consumptions are very low. So the total power consumption of 160 line circuit is lower than 100 mW. In the test, the non-uniformity of the readout circuit decreases from 10% to 1%. This result is in accordance with simulation result on non-uniformity. The other test results of total power consumption and the output amplitude also agree with simulation results. The readout circuit has good noise characteristics and the output noise is lower than 1 mV. When the readout circuit and uncooled infrared detector are connected, the infrared signal can be well read out. When the integration time is 20 μups, the device response is 0.294 mV/Ω. The overall system performance is very good. This circuit design based on current mirror has laid the technical foundation for developing readout circuit of the very large scale uncooled infrared detector in the future.

Reference (26)

Catalog

    /

    返回文章
    返回