Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The electric field effect on the hydrogen storage of (MgO)12 by ab intio calculations

Yin Yue-Hong Chen Hong-Shan Song Yan

The electric field effect on the hydrogen storage of (MgO)12 by ab intio calculations

Yin Yue-Hong, Chen Hong-Shan, Song Yan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • (MgO)12 in a tube structure is one of the magic number clusters of (MgO)n and exhibits particular stability. To study the electric field effect on the hydrogen storage properties of (MgO)12, the H2 adsorption behavior on the surface of the tube (MgO)12 in an external electric field is explored at the level of B3LY/6-31G**. In the external electric field, the (MgO)12 keeps the frame of tube structure but with little distortion, implying that the (MgO)12 cluster can sustain the strong electric field for hydrogen storage. The NBO analysis also indicates that (MgO)12 is polarized by the external electric field; and its dipole momenta increase to 9.21 and 19.39 Debye at the field intensities of 0.01 and 0.02 a.u., respectively. Without the external electric field, H2 can be adsorbed on Mg atoms in the end on modes, while on O atoms in the top on modes. When the external electric field is applied, whether H2 is adsorbed on Mg or O atoms, the stable adsorption structures are all top on modes and the molecular orientation of H2 is turned to the direction of the external electric field. Because (MgO)12 and H2 are effectively polarized by the external electric field, the adsorption strength of H2 on some adsorption sites are enhanced remarkably. The adsorption energies of H2 on the three-coordinated Mg/O are promoted from 0.08/0.06 eV in free field to 0.12/0.11 eV and 0.20/0.26 eV at field intensities of 0.01 a.u. and 0.02 a.u., respectively. Electronic structure analysis reveals that when H2 is adsorbed on Mg atoms, this process denotes charges moving to the cluster, and the improvement of adsorption interaction of H2 on Mg atoms is mainly due to the polarization effect. While the adsorption on O atoms, on the one hand implies the polarization effect of O anion is stronger than that of Mg cation, on the other hand, H2 receives charges from (MgO)12 and its valence orbitals also take part in the bonding with the valence orbitals of the cluster. Thus the structures of H2 adsorbed on O atoms are more stable. In an external electric field, (MgO)12 can adsorb sixteen H2 molecules at most, and the corresponding mass density of hydrogen storage reaches 6.25wt%.
      Corresponding author: Chen Hong-Shan, Chenhs@nwnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 20873102), the Innovative Project in Science and Technology of Northwest Normal Universtiy, China (Grant No. NWNU-KJCXGC03-62), the College Research Funding of Gansu Province and the Foundation of Promotion of Researching Ability of Young Teachers of Northwest Normal University, China (Grant No. NWNU-LKQN-12-30).
    [1]

    Lubitz W, Tumas W 2007 Chem. Rev. 107 3900

    [2]

    Palo D R, Dagle R A, Holladay J D 2007 Chem. Rev. 107 3392

    [3]

    Hambourger M, Moore G F, Kramer D M, Gust D, Moore A L, Moore T A 2008 Chem. Soc. Rev. 38 25

    [4]

    Kudo A, Miseki Y 2008 Chem. Soc. Rev. 38 253

    [5]

    Esswein A J, Nocera D G 2007 Chem. Rev. 107 4022

    [6]

    Nocera D G 2012 Acc. Chem. Res. 45 767

    [7]

    Jena P 2011 J. Phy. Chem. Lett. 2 206

    [8]

    Struzhkin V V, Militzer B, Mao W L, Mao H, Hemley R J 2007 Chem. Rev. 107 4133

    [9]

    Rowsell J L C, Yaghi O M 2005 Angew. Chem. Inter. Edti. 44 4670

    [10]

    Bhatia S K 2006 Langmuir 22 1688

    [11]

    Zhang W X, Liu Y X, Tian H, Xu J W, Feng L 2015 Chin. Phys. B 24 076104

    [12]

    Li S X, Wu Y G, Linghu R F, Sun G Y, Zhang Z P, Qin S J 2015 Acta Phys. Sin. 64 043101(in Chinese) [李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介 2015 物理学报 64 043101]

    [13]

    Ling Z G Tang Y L, Li T, Li Y P, Wei X N 2014 Acta Phys. Sin. 63 023102(in Chinese) [凌智钢, 唐延林, 李涛, 李玉鹏, 魏晓楠 2014 物理学报 63 023102]

    [14]

    Zhang Z W, Li J C, Jiang Q 2011 Front. Phys. 6 162

    [15]

    Guo J H, Zhang H 2011 Struc. Chem. 22 1039

    [16]

    Zhou J, Wang Q, Sun Q, Jena P, Chen X S 2010 PNAS 107 2801

    [17]

    Ao Z M, Hernandez-Nieves A D, Peeters F M, Li S 2012 Phys. Chem. Chem. Phys. 14 1463

    [18]

    Jhi S H, Ihm J 2011 MRS Bull. 36 198

    [19]

    Sun X, Jiang Y H, Shang Z S 2010 J. Phys. Chem. C 114 7

    [20]

    Ao Z M, Peeters F M 2010 J. Phys. Chem. C 114 14503

    [21]

    Liu W, Zhao Y H, Nguyen J, Li Y, Jiang Q, Lavernia E J 2009 Carbon 47 3452

    [22]

    Sawabe K, Koga N, Morokuma K, Iwasawa Y 1992 J. Chem. Phys. 97 6871

    [23]

    Sawabe K, Koga N, Morokuma K, Iwasawa Y 1994 J. Chem. Phys. 101 4819

    [24]

    Hrmansson K, Baudin M, Ensing B, Alfredsson M, Wojcik M 1998 J. Chem. Phys. 109 7515

    [25]

    Skofronick J G, Toennies J P, Traeger F, Weiss H 2003 Phys. Rev. B 67 035413

    [26]

    Larese J Z, Frazier L, Adams M A, Arnold T, Hinde R J, Ramirez-Cuesta A 2006 Phys. B Cond. Matt. 385 144

    [27]

    Dawoud J N, Sallabi A K, Fasfous, II, Jack D B 2009 J. Surf. Sci. Nano. 7 207

    [28]

    Wu G, Zhang J, Wu Y, Li Q, Chou K, Bao X 2009 J. Alloys. Comp. 480 788

    [29]

    Chen H S, Chen H J 2011 Acta Phys. Sin. 60 073601(in Chinese) [陈宏善, 陈华君 2011 物理学报 60 073601]

    [30]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [31]

    Ditchfield R, Hehre W, Pople J A 1971 J. Chem. Phys. 54 724

    [32]

    Frisch M J, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Montgomery J, Vreven T, Kudin K, Burant J 2008

    [33]

    Ziemann P J, Castleman Jr A W 1991 J. Chem. Phys. 94 718

    [34]

    Ge G X, Luo Y H 2008 Acta Phys. Sin. 57 4851(in Chinese) [葛桂贤, 罗有华 2008 物理学报 57 4851]

  • [1]

    Lubitz W, Tumas W 2007 Chem. Rev. 107 3900

    [2]

    Palo D R, Dagle R A, Holladay J D 2007 Chem. Rev. 107 3392

    [3]

    Hambourger M, Moore G F, Kramer D M, Gust D, Moore A L, Moore T A 2008 Chem. Soc. Rev. 38 25

    [4]

    Kudo A, Miseki Y 2008 Chem. Soc. Rev. 38 253

    [5]

    Esswein A J, Nocera D G 2007 Chem. Rev. 107 4022

    [6]

    Nocera D G 2012 Acc. Chem. Res. 45 767

    [7]

    Jena P 2011 J. Phy. Chem. Lett. 2 206

    [8]

    Struzhkin V V, Militzer B, Mao W L, Mao H, Hemley R J 2007 Chem. Rev. 107 4133

    [9]

    Rowsell J L C, Yaghi O M 2005 Angew. Chem. Inter. Edti. 44 4670

    [10]

    Bhatia S K 2006 Langmuir 22 1688

    [11]

    Zhang W X, Liu Y X, Tian H, Xu J W, Feng L 2015 Chin. Phys. B 24 076104

    [12]

    Li S X, Wu Y G, Linghu R F, Sun G Y, Zhang Z P, Qin S J 2015 Acta Phys. Sin. 64 043101(in Chinese) [李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介 2015 物理学报 64 043101]

    [13]

    Ling Z G Tang Y L, Li T, Li Y P, Wei X N 2014 Acta Phys. Sin. 63 023102(in Chinese) [凌智钢, 唐延林, 李涛, 李玉鹏, 魏晓楠 2014 物理学报 63 023102]

    [14]

    Zhang Z W, Li J C, Jiang Q 2011 Front. Phys. 6 162

    [15]

    Guo J H, Zhang H 2011 Struc. Chem. 22 1039

    [16]

    Zhou J, Wang Q, Sun Q, Jena P, Chen X S 2010 PNAS 107 2801

    [17]

    Ao Z M, Hernandez-Nieves A D, Peeters F M, Li S 2012 Phys. Chem. Chem. Phys. 14 1463

    [18]

    Jhi S H, Ihm J 2011 MRS Bull. 36 198

    [19]

    Sun X, Jiang Y H, Shang Z S 2010 J. Phys. Chem. C 114 7

    [20]

    Ao Z M, Peeters F M 2010 J. Phys. Chem. C 114 14503

    [21]

    Liu W, Zhao Y H, Nguyen J, Li Y, Jiang Q, Lavernia E J 2009 Carbon 47 3452

    [22]

    Sawabe K, Koga N, Morokuma K, Iwasawa Y 1992 J. Chem. Phys. 97 6871

    [23]

    Sawabe K, Koga N, Morokuma K, Iwasawa Y 1994 J. Chem. Phys. 101 4819

    [24]

    Hrmansson K, Baudin M, Ensing B, Alfredsson M, Wojcik M 1998 J. Chem. Phys. 109 7515

    [25]

    Skofronick J G, Toennies J P, Traeger F, Weiss H 2003 Phys. Rev. B 67 035413

    [26]

    Larese J Z, Frazier L, Adams M A, Arnold T, Hinde R J, Ramirez-Cuesta A 2006 Phys. B Cond. Matt. 385 144

    [27]

    Dawoud J N, Sallabi A K, Fasfous, II, Jack D B 2009 J. Surf. Sci. Nano. 7 207

    [28]

    Wu G, Zhang J, Wu Y, Li Q, Chou K, Bao X 2009 J. Alloys. Comp. 480 788

    [29]

    Chen H S, Chen H J 2011 Acta Phys. Sin. 60 073601(in Chinese) [陈宏善, 陈华君 2011 物理学报 60 073601]

    [30]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [31]

    Ditchfield R, Hehre W, Pople J A 1971 J. Chem. Phys. 54 724

    [32]

    Frisch M J, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Montgomery J, Vreven T, Kudin K, Burant J 2008

    [33]

    Ziemann P J, Castleman Jr A W 1991 J. Chem. Phys. 94 718

    [34]

    Ge G X, Luo Y H 2008 Acta Phys. Sin. 57 4851(in Chinese) [葛桂贤, 罗有华 2008 物理学报 57 4851]

  • [1] Yin Yue-Hong, Xu Hong-Ping. Theoretical study on the hydrogen storage properties of (MgO)4 under external electric field. Acta Physica Sinica, 2019, 68(16): 163601. doi: 10.7498/aps.68.20190544
    [2] Zhou Xiao-Feng, Fang Hao-Yu, Tang Chun-Mei. Hydrogen storage capacity of expanded sandwich structure graphene-2Li-graphene. Acta Physica Sinica, 2019, 68(5): 053601. doi: 10.7498/aps.68.20181497
    [3] Zhao Yin-Chang, Dai Zhen-Hong, Sui Peng-Fei, Zhang Xiao-Ling. Study of the high hydrogen storage capacity on 2D Li+BC3 complex. Acta Physica Sinica, 2013, 62(13): 137301. doi: 10.7498/aps.62.137301
    [4] Zuo Ying-Hong, Wang Jian-Guo, Zhu Jin-Hui, Niu Sheng-Li, Fan Ru-Yu. Investigation of the cathode electric field at the initial stage of explosive electron emission. Acta Physica Sinica, 2012, 61(17): 177901. doi: 10.7498/aps.61.177901
    [5] Ruan Wen, Luo Wen-Lang, Zhang Li, Zhu Zheng-He. Molecular structure and electronic spectrum of styrene under the external electric field. Acta Physica Sinica, 2008, 57(10): 6207-6212. doi: 10.7498/aps.57.6207
    [6] Ling Zhi-Gang, Tang Yan-Lin, Li Tao, Li Yu-Peng, Wei Xiao-Nan. Molecular structure and electronic spectrum of 2, 2, 5, 5-tetrachlorobiphenyl under the extenal electric field. Acta Physica Sinica, 2013, 62(22): 223102. doi: 10.7498/aps.62.223102
    [7] Ling Zhi-Gang, Tang Yan-Lin, Li Tao, Li Yu-Peng, Wei Xiao-Nan. Molecular structure and properties of zirconiumdioxide under the external electric field. Acta Physica Sinica, 2014, 63(2): 023102. doi: 10.7498/aps.63.023102
    [8] Yuan Li-Hua, Gong Ji-Jun, Wang Dao-Bin, Zhang Cai-Rong, Zhang Mei-Ling, Su Jun-Yan, Kang Long. Hydrogen storage capacity of alkali metal atoms decorated porous graphene. Acta Physica Sinica, 2020, 69(6): 068802. doi: 10.7498/aps.69.20190694
    [9] Qi Peng-Tang, Chen Hong-Shan. Hydrogen storage properties of Li-decorated C24 clusters. Acta Physica Sinica, 2015, 64(23): 238102. doi: 10.7498/aps.64.238102
    [10] Zhang Li, Lin Zhi-Yu, Luo Jun, Wang Shu-Long, Zhang Jin-Cheng, Hao Yue, Dai Yang, Chen Da-Zheng, Guo Li-Xin. High breakdown voltage lateral AlGaN/GaN high electron mobility transistor with p-GaN islands buried buffer layer for power applications. Acta Physica Sinica, 2017, 66(24): 247302. doi: 10.7498/aps.66.247302
    [11] Zheng Hong, Wang Shao-Qing, Cheng Hui-Ming. Effect of micropore on hydrogen adsorption of single walled carbon nanotubes. Acta Physica Sinica, 2005, 54(10): 4852-4856. doi: 10.7498/aps.54.4852
    [12] Tang Yuan-Hong, Lin Liang-Wu, Guo Chi. Hydrogen storage mechanism of multiwalled carbon nanotube bundles studied by X-ray absorption spectra. Acta Physica Sinica, 2006, 55(8): 4197-4201. doi: 10.7498/aps.55.4197
    [13] Yan Ke-Feng, Li Xiao-Sen, Sun Li-Hua, Chen Zhao-Yang, Xia Zhi-Ming. Molecular dynamics simulation of promotion mechanism of store hydrogen of clathrate hydrate. Acta Physica Sinica, 2011, 60(12): 128801. doi: 10.7498/aps.60.128801
    [14] Feng Xiao-Qin, Jia Jian-Ming, Chen Gui-Bin. Electronic properties and modulation of structurally bent BN nanoribbon. Acta Physica Sinica, 2014, 63(3): 037101. doi: 10.7498/aps.63.037101
    [15] Liu Xiu-Ying, Wang Chao-Yang, Tang Yong-Jian, Sun Wei-Guo, Wu Wei-Dong, Zhang Hou-Qiong, Liu Miao, Yuan Lei, Xu Jia-Jing. Comparative theoretical study of hydrogen storage in single-walled boron-nitride and carbon nanotubes. Acta Physica Sinica, 2009, 58(2): 1126-1131. doi: 10.7498/aps.58.1126
    [16] Ye Jia-Yu, Liu Ya-Li, Wang Jing-Lin, He Yao. Influence of Zr catalyst on reversible hydrogen storage characteristics of NaAlH4 and Na3AlH6. Acta Physica Sinica, 2010, 59(6): 4178-4185. doi: 10.7498/aps.59.4178
    [17] Shen Chao, Hu Ya-Ting, Zhou Shuo, Ma Xiao-Lan, Li Hua. The grand canonical Monte Carlo simulation of hydrogen physisorption on single-walled carbon nanotubes at the low and normal temperatures. Acta Physica Sinica, 2013, 62(3): 038801. doi: 10.7498/aps.62.038801
    [18] Dai Wei, Tang Yong-Jian, Wang Chao-Yang, Sun Wei-Guo. Characteristics of hydrogen storage studied using homemade apparatus. Acta Physica Sinica, 2009, 58(10): 7313-7316. doi: 10.7498/aps.58.7313
    [19] Tao Qiang, Hu Xiao-Ying, Zhu Pin-Wen. Electronic structure of zigzag graphene nanoribbin terminated by hydroxyl. Acta Physica Sinica, 2011, 60(9): 097301. doi: 10.7498/aps.60.097301
    [20] Qin Xiao-Gang, He De-Yan, Wang Ji. Geant 4-based calculation of electric field in deep dielectric charging. Acta Physica Sinica, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
  • Citation:
Metrics
  • Abstract views:  1046
  • PDF Downloads:  256
  • Cited By: 0
Publishing process
  • Received Date:  15 April 2015
  • Accepted Date:  05 June 2015
  • Published Online:  05 October 2015

The electric field effect on the hydrogen storage of (MgO)12 by ab intio calculations

    Corresponding author: Chen Hong-Shan, Chenhs@nwnu.edu.cn
  • 1. College of Physics and Electronic Engineering, Northwest Normal University; Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, Lanzhou 730070, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 20873102), the Innovative Project in Science and Technology of Northwest Normal Universtiy, China (Grant No. NWNU-KJCXGC03-62), the College Research Funding of Gansu Province and the Foundation of Promotion of Researching Ability of Young Teachers of Northwest Normal University, China (Grant No. NWNU-LKQN-12-30).

Abstract: (MgO)12 in a tube structure is one of the magic number clusters of (MgO)n and exhibits particular stability. To study the electric field effect on the hydrogen storage properties of (MgO)12, the H2 adsorption behavior on the surface of the tube (MgO)12 in an external electric field is explored at the level of B3LY/6-31G**. In the external electric field, the (MgO)12 keeps the frame of tube structure but with little distortion, implying that the (MgO)12 cluster can sustain the strong electric field for hydrogen storage. The NBO analysis also indicates that (MgO)12 is polarized by the external electric field; and its dipole momenta increase to 9.21 and 19.39 Debye at the field intensities of 0.01 and 0.02 a.u., respectively. Without the external electric field, H2 can be adsorbed on Mg atoms in the end on modes, while on O atoms in the top on modes. When the external electric field is applied, whether H2 is adsorbed on Mg or O atoms, the stable adsorption structures are all top on modes and the molecular orientation of H2 is turned to the direction of the external electric field. Because (MgO)12 and H2 are effectively polarized by the external electric field, the adsorption strength of H2 on some adsorption sites are enhanced remarkably. The adsorption energies of H2 on the three-coordinated Mg/O are promoted from 0.08/0.06 eV in free field to 0.12/0.11 eV and 0.20/0.26 eV at field intensities of 0.01 a.u. and 0.02 a.u., respectively. Electronic structure analysis reveals that when H2 is adsorbed on Mg atoms, this process denotes charges moving to the cluster, and the improvement of adsorption interaction of H2 on Mg atoms is mainly due to the polarization effect. While the adsorption on O atoms, on the one hand implies the polarization effect of O anion is stronger than that of Mg cation, on the other hand, H2 receives charges from (MgO)12 and its valence orbitals also take part in the bonding with the valence orbitals of the cluster. Thus the structures of H2 adsorbed on O atoms are more stable. In an external electric field, (MgO)12 can adsorb sixteen H2 molecules at most, and the corresponding mass density of hydrogen storage reaches 6.25wt%.

Reference (34)

Catalog

    /

    返回文章
    返回