Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Novel properties of 5d transition metal oxides

Du Yong-Ping Liu Hui-Mei Wan Xian-Gang

Novel properties of 5d transition metal oxides

Du Yong-Ping, Liu Hui-Mei, Wan Xian-Gang
PDF
Get Citation
  • The spin-orbit coupling (SOC) in the 5d transition metal element is expected to be strong due to the large atomic number and ability to modify the electronic structure drastically. On the other hand, the Coulomb interaction in 5d transition is non-negligible. Hence, the interplay of electron correlations and strong spin-orbit interactions make the 5d transition metal oxides (TMOs) specially interesting for possible novel properties. In this paper, we briefly summarize our theoretical studies on the 5d TMO. In section 2, we systematically discuss pyrochlore iridates. We find that magnetic moments at Ir sites form a non-colinear pattern with moment on a tetrahedron pointing to all-in or all-out from the center. We propose that pyrochlore iridates be Weyl Semimetal (WSM), thus providing a condensed-matter realization of Weyl fermion that obeys a two-component Dirac equation. We find that Weyl points are robust against perturbation and further reveal that WSM exhibits remarkable topological properties manifested by surface states in the form of Fermi arcs, which is impossible to realize in purely two-dimensional band structures. In section 3, based on density functional calculation, we predict that spinel osmates (AOs2O4,A=m Ca,Sr) show a large magnetoelectric coupling characteristic of axion electrodynamics. They show ferromagnetic order in a reasonable range of the on-site Coulomb correlation U and exotic electronic properties, in particular, a large magnetoelectric coupling characteristic of axion electrodynamics. Depending on U, other electronic phases including a 3D WSM and Mott insulator are also shown to occur. In section 4, we comprehensively discuss the electronic and magnetic properties of Slater insulator NaOsO3, and successfully predict the magnetic ground state configuration of this compound. Its ground state is of a G-type antiferromagnet, and it is the combined effect of U and magnetic configuration that results in the insulating behavior of NaOsO3 We also discuss the novel properties of LiOsO3, and suggest that the highly anisotropic screening and the local dipole-dipole interactions are the two most important keys to forming LiOsO3-type metallic ferroelectricity in section 5. Using density-functional calculations, we systematically study the origin of the metallic ferroelectricity in LiOsO3. We confirm that the ferroelectric transition in this compound is order-disorder-like. By doing electron screening analysis, we unambiguously demonstrate that the long-range ferroelectric order in LiOsO3 results from the incomplete screening of the dipole-dipole interaction along the nearest-neighboring Li-Li chain direction.
      Corresponding author: Wan Xian-Gang, xgwan@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374137, 11174124).
    [1]

    Imada M, Fujimori A, Tokura Y 1988 Rev. Mod. Phys. 70 1039

    [2]

    Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O, Marianetti C A 2006 Rev. Mod. Phys. 78 865

    [3]

    Cohen R E 1992 Nature 358 136

    [4]

    Jin S, Tiefel T H, McCormack M, Fastnacht R A, Ramesh R, Chen L H 1994 Science 264 413

    [5]

    Schiffer P, Ramirez A P, Bao W, Cheong S W 1995 Phys. Rev. Lett. 75 3336

    [6]

    Tokura Y, Nagaosa N 2000 Science 288 462

    [7]

    Pickett W 1989 Rev. Mod. Phys. 61 433

    [8]

    Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G, Rotenberg E 2008 Phys. Rev. Lett. 101 076402

    [9]

    Kim B J, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H, Arima T 2009 Science 323 1329

    [10]

    Jin H, Jeong H, Ozaki T, Yu J 2009 Phys. Rev. B 80 075112

    [11]

    Watanabe H, Shirakawa T, Yunoki S 2010 Phys. Rev. Lett. 105 216410

    [12]

    Arita R, Kunes J, Kozhevnikov A V, Eguiluz A G, Imada M 2012 Phys. Rev. Lett. 108 086403

    [13]

    Mattheiss L F 1976 Phys. Rev. B 13 2433

    [14]

    Witczak-Krempa W, Chen G, Kim Y B, Balents L 2014 Annu. Rev. Condens. Matter Phys. 5 57

    [15]

    Wan X, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101

    [16]

    Balents L 2011 Physica A 4 36

    [17]

    Wan X, Vishwanath A, Savrasov S Y 2012 Phys. Rev. Lett. 108 146601

    [18]

    Du Y, Wan X, Sheng L, Dong J, Savrasov S Y 2012 Phys. Rev. B 85 174424

    [19]

    Liu H M, Du Y, Xie Y L, Liu J M, Duan C G, Wan X 2015 Phys. Rev. B 91 064104

    [20]

    Singh R S, Medicherla V R R, Maiti K, Sampathkumaran E V 2008 Phys. Rev. B 77 201102

    [21]

    Matsuhira K, Wakeshima M, Nakanishi R, Yamada T, Nakamura A, Kawano W, Takagi S, Hinatsu Y 2007 J. Phys. Soc. Jpn. 76 043706

    [22]

    Yanagishima D, Maeno Y 2001 J. Phys. Soc. Jpn. 70 2880

    [23]

    Fukazawa H, Maeno Y 2002 J. Phys. Soc. Jpn. 71 2578

    [24]

    Soda M, Aito N, Kurahashi Y, Kobayashi Y, Sato M 2003 Physica B 329 1071

    [25]

    Taira N, Wakeshima M Hinatsu Y 2001 J. Phys.: Condens. Matter 13 5527

    [26]

    Nakatsuji S, Machida Y, Maeno Y, Tayama T, Sakakibara T, Duijn J, Balicas L, Millican J N, Macaluso R T, Chan J Y 2006 Phys. Rev. Lett. 96 087204

    [27]

    Subramanian M A, Aravamudan G, Subba Rao G V 1983 Prog. Solid St. Chem. 15 55

    [28]

    Bramwell S T, Gingras M J P 2001 Science 294 1495

    [29]

    Ramirez A P 1994 Ann. Rev. Mater. Sci. 24 453

    [30]

    Gardner J S, Gingras M J P, Greedan J E 2010 Rev. Mod. Phys. 82 53

    [31]

    Savrasov S Y 1996 Phys. Rev. B 54 16470

    [32]

    Wan X, Zhou J, Dong J 2010 Europhys. Lett. 92 57007

    [33]

    Du Y, Ding H, Sheng L, Savrasov S Y, Wan X, Duan C 2014 J. Phys.: Condens. Matter 26 025503

    [34]

    Siddharthan R, Shastry B S, Ramirez A P, Hayashi A, Cava R J, Rosenkranz S 1999 Phys. Rev. Lett. 83 1854

    [35]

    Harris M J, Bramwell S T, McMorrow D F, Zeiske T, Godfrey K W 1997 Phys. Rev. Lett. 79 2554

    [36]

    Wan X, Yin Q, Savrasov S Y 2006 Phys. Rev. Lett. 97 266403

    [37]

    Elhajal M, Canals B, Sunyer R, Lacroix C 2005 Phys. Rev. B 71 094420

    [38]

    Mandrus D, Thompson J R, Gaal R, Forro L, Bryan J C, Chakoumakos B C, Woods L M, Sales B C, Fishman R S, Keppens V 2001 Phys. Rev. B 63 195104

    [39]

    Disseler S M, Dhital C, Amato A, Giblin S R, Cruz C, Wilson S D, Graf M J 2012 Phys. Rev. B 86 014428

    [40]

    Disseler S M 2014 Phys. Rev. B 89 140413

    [41]

    Tomiyasu K, Matsuhira K, Iwasa K, Watahiki M, Takagi S, Wakeshima M, Hinatsu Y, Yokoyama M, Ohoyama K, Yamada K 2012 J. Phys. Soc. Jpn. 81 034709

    [42]

    Lefrancois E, Simonet V, Ballou R, Lhotel E, Hadj-Azzem A, Kodjikian S, Lejay P, Manuel P, Khalyavin D, Chapon L C 2015 arXiv: 1502.00787

    [43]

    Slater J C 1951 Phys. Rev. 82 538

    [44]

    Shinaoka H, Miyake T, Ishibashi S 2012 Phys. Rev. Lett. 108 247204

    [45]

    Pesin D A, Balents L 2010 Nature Phys. 6 376

    [46]

    Guo H M, Franz M 2009 Phys. Rev. Lett. 103 206805

    [47]

    Yang B J, Kim Y B 2010 Phys. Rev. B 82 085111

    [48]

    Anisimov V I, Aryasetiawan F, Lichtenstein J 1997 J. Phys.: Condens. Matter 9 767

    [49]

    Weyl H 1929 Zeitshrift fur Physik 56 330

    [50]

    Turner A M, Vishwanath A 2013 arXiv:1301.0330

    [51]

    Murakami S 2007 New J. Phys. 9 356

    [52]

    Halasz G B, Balents L 2012 Phys. Rev. B 85 035103

    [53]

    Weng H, Fang H C, Fang Z, Bernevig B A, Dai X 2015 Phys. Rev. X 5 011029

    [54]

    Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J, Rappe A M 2012 Phys. Rev. Lett. 108 140405

    [55]

    Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X, Fang Z 2012 Phys. Rev. B 85 195320

    [56]

    Wang Z, Weng H, Wu Q, Dai X, Fang Z 2013 Phys. Rev. B 88 125427

    [57]

    Du Y, Wan B, Wang D, Sheng L, Duan C G, Wan X 2014 arXiv:1411.4394

    [58]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [59]

    Wilczek F 1987 Phys. Rev. Lett. 58 1799

    [60]

    Qi X L, Hughes T, Zhang S C 2008 Phys. Rev. B 78 195424

    [61]

    Li R, Wang J, Qi X L, Zhang S C 2010 Nature Phys. 6 284

    [62]

    Wang J, Li R, Zhang S C, Qi X L 2011 Phys. Rev. Lett. 106 126403

    [63]

    Malashevich A, Souzo I, Coh S, Vanderbilt D 2010 New J. Phys. 12 053032

    [64]

    Essin A M, Turner A M, Moore J E, Vanderbilt D 2010 Phys. Rev. B 81 205104

    [65]

    Essin A M, Moore J E, Vanderbilt D 2009 Phys. Rev. Lett. 102 146805

    [66]

    Teo J C Y, Kane C L 2010 Phys. Rev. B 82 115120

    [67]

    Dzero M, Sun K, Galitski V, Coleman P 2010 Phys. Rev. Lett. 104 106408

    [68]

    Fu L, Kane C L 2007 Phys. Rev. B 76 045302

    [69]

    Turner A M, Zhang Y, Mong R S K, Vishwanath A 2010 arXiv:1010.4335

    [70]

    Hughes T L, Prodan E, Bernevig B A 2010 arXiv:1010.4508

    [71]

    Padilla W J, Mandrus D, Basov D N 2002 Phys. Rev. B 66 035120

    [72]

    Shi Y G, Guo Y F, Yu S, Arai M, Belik A A, Sto A, Yamaura K, Takayama-Muromachi E, Tian H F, Yang H X, Li J Q, Varga T, Mitchell J F, Okamoto S 2009 Phys. Rev. B 80 161104

    [73]

    Blaha P, Schwarz K, Madsen G K H, Kvasnicka D, Luitz J 2001 WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Austria: Karlheinz Schwarz, Technische Universitat Wien)

    [74]

    Moriya T 1985 Spin Fluctuations in Itinerant Electron Magnetism (New York: Springer-Verlag)

    [75]

    Calder S, Garlea V O, McMorrow D F, Lumsden M D, Stone M B, Lang J C, Kim J W, Schlueter J A, Shi Y G, Yamaura K, Sun Y S, Tsujimoto Y, Christianson A D 2012 Phys. Rev. Lett. 108 257209

    [76]

    Shi Y, Guo Y, Wang X, Princep A J, Khalyavin D, Manuel P, Michiue Y, Sato A, Tsuda K, Yu S, Arai M, Shirako Y, Akaogi M, Wang N, Yamaura K, Boothroyd A T 2013 Nature Mat. 12 1024

    [77]

    Simand H, Kim B G 2014 Phys. Rev. B 89 201107

    [78]

    Xiang H J 2014 Phys. Rev. B 90 094108

    [79]

    Giovannetti G, Capone M 2014 Phys. Rev. B 90 195113

    [80]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [81]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [82]

    Inbar I, Cohen R E 1996 Phys. Rev. B 53 1193

    [83]

    Duan C G, Velev J P, Sabirianov R F, Zhu Z, Chu J, Jaswal S S, Tsymbal E Y 2008 Phys. Rev. Lett. 101 137201

    [84]

    Chikara S, Korneta O, Crummett W P, DeLong L E, Schlottmann P, Cao G 2009 Phys. Rev. B 80 140407(R)

    [85]

    Wang F, Senthil T 2011 Phys. Rev. Lett. 106 136402

    [86]

    Shitade A, Katsura H, Kunes J, Qi X L, Zhang S C, Nagaosa N 2009 Phys. Rev. Lett. 102 256403

    [87]

    Maiti K, Singh R S, Medicherla V R R, Rayaprol S, Sampathkumaran E V 2005 Phys. Rev. Lett. 95 016404

    [88]

    Cheng J G Zhou J S, Alonso J A, Goodenough J B, Sui Y, Matsubayashi K, Uwatoko Y 2009 Phys. Rev. B 80 104430

    [89]

    Jackeli G, Khaliulin G 2009 Phys. Rev. Lett. 102 017205

    [90]

    Okamoto T, Nohara M, Aruga-Katori H, Takagi H 2007 Phys. Rev. Lett. 99 137207

    [91]

    Lee P A 2008 Science 321 1306

    [92]

    Balents L 2010 Nature 464 199

  • [1]

    Imada M, Fujimori A, Tokura Y 1988 Rev. Mod. Phys. 70 1039

    [2]

    Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O, Marianetti C A 2006 Rev. Mod. Phys. 78 865

    [3]

    Cohen R E 1992 Nature 358 136

    [4]

    Jin S, Tiefel T H, McCormack M, Fastnacht R A, Ramesh R, Chen L H 1994 Science 264 413

    [5]

    Schiffer P, Ramirez A P, Bao W, Cheong S W 1995 Phys. Rev. Lett. 75 3336

    [6]

    Tokura Y, Nagaosa N 2000 Science 288 462

    [7]

    Pickett W 1989 Rev. Mod. Phys. 61 433

    [8]

    Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G, Rotenberg E 2008 Phys. Rev. Lett. 101 076402

    [9]

    Kim B J, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H, Arima T 2009 Science 323 1329

    [10]

    Jin H, Jeong H, Ozaki T, Yu J 2009 Phys. Rev. B 80 075112

    [11]

    Watanabe H, Shirakawa T, Yunoki S 2010 Phys. Rev. Lett. 105 216410

    [12]

    Arita R, Kunes J, Kozhevnikov A V, Eguiluz A G, Imada M 2012 Phys. Rev. Lett. 108 086403

    [13]

    Mattheiss L F 1976 Phys. Rev. B 13 2433

    [14]

    Witczak-Krempa W, Chen G, Kim Y B, Balents L 2014 Annu. Rev. Condens. Matter Phys. 5 57

    [15]

    Wan X, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101

    [16]

    Balents L 2011 Physica A 4 36

    [17]

    Wan X, Vishwanath A, Savrasov S Y 2012 Phys. Rev. Lett. 108 146601

    [18]

    Du Y, Wan X, Sheng L, Dong J, Savrasov S Y 2012 Phys. Rev. B 85 174424

    [19]

    Liu H M, Du Y, Xie Y L, Liu J M, Duan C G, Wan X 2015 Phys. Rev. B 91 064104

    [20]

    Singh R S, Medicherla V R R, Maiti K, Sampathkumaran E V 2008 Phys. Rev. B 77 201102

    [21]

    Matsuhira K, Wakeshima M, Nakanishi R, Yamada T, Nakamura A, Kawano W, Takagi S, Hinatsu Y 2007 J. Phys. Soc. Jpn. 76 043706

    [22]

    Yanagishima D, Maeno Y 2001 J. Phys. Soc. Jpn. 70 2880

    [23]

    Fukazawa H, Maeno Y 2002 J. Phys. Soc. Jpn. 71 2578

    [24]

    Soda M, Aito N, Kurahashi Y, Kobayashi Y, Sato M 2003 Physica B 329 1071

    [25]

    Taira N, Wakeshima M Hinatsu Y 2001 J. Phys.: Condens. Matter 13 5527

    [26]

    Nakatsuji S, Machida Y, Maeno Y, Tayama T, Sakakibara T, Duijn J, Balicas L, Millican J N, Macaluso R T, Chan J Y 2006 Phys. Rev. Lett. 96 087204

    [27]

    Subramanian M A, Aravamudan G, Subba Rao G V 1983 Prog. Solid St. Chem. 15 55

    [28]

    Bramwell S T, Gingras M J P 2001 Science 294 1495

    [29]

    Ramirez A P 1994 Ann. Rev. Mater. Sci. 24 453

    [30]

    Gardner J S, Gingras M J P, Greedan J E 2010 Rev. Mod. Phys. 82 53

    [31]

    Savrasov S Y 1996 Phys. Rev. B 54 16470

    [32]

    Wan X, Zhou J, Dong J 2010 Europhys. Lett. 92 57007

    [33]

    Du Y, Ding H, Sheng L, Savrasov S Y, Wan X, Duan C 2014 J. Phys.: Condens. Matter 26 025503

    [34]

    Siddharthan R, Shastry B S, Ramirez A P, Hayashi A, Cava R J, Rosenkranz S 1999 Phys. Rev. Lett. 83 1854

    [35]

    Harris M J, Bramwell S T, McMorrow D F, Zeiske T, Godfrey K W 1997 Phys. Rev. Lett. 79 2554

    [36]

    Wan X, Yin Q, Savrasov S Y 2006 Phys. Rev. Lett. 97 266403

    [37]

    Elhajal M, Canals B, Sunyer R, Lacroix C 2005 Phys. Rev. B 71 094420

    [38]

    Mandrus D, Thompson J R, Gaal R, Forro L, Bryan J C, Chakoumakos B C, Woods L M, Sales B C, Fishman R S, Keppens V 2001 Phys. Rev. B 63 195104

    [39]

    Disseler S M, Dhital C, Amato A, Giblin S R, Cruz C, Wilson S D, Graf M J 2012 Phys. Rev. B 86 014428

    [40]

    Disseler S M 2014 Phys. Rev. B 89 140413

    [41]

    Tomiyasu K, Matsuhira K, Iwasa K, Watahiki M, Takagi S, Wakeshima M, Hinatsu Y, Yokoyama M, Ohoyama K, Yamada K 2012 J. Phys. Soc. Jpn. 81 034709

    [42]

    Lefrancois E, Simonet V, Ballou R, Lhotel E, Hadj-Azzem A, Kodjikian S, Lejay P, Manuel P, Khalyavin D, Chapon L C 2015 arXiv: 1502.00787

    [43]

    Slater J C 1951 Phys. Rev. 82 538

    [44]

    Shinaoka H, Miyake T, Ishibashi S 2012 Phys. Rev. Lett. 108 247204

    [45]

    Pesin D A, Balents L 2010 Nature Phys. 6 376

    [46]

    Guo H M, Franz M 2009 Phys. Rev. Lett. 103 206805

    [47]

    Yang B J, Kim Y B 2010 Phys. Rev. B 82 085111

    [48]

    Anisimov V I, Aryasetiawan F, Lichtenstein J 1997 J. Phys.: Condens. Matter 9 767

    [49]

    Weyl H 1929 Zeitshrift fur Physik 56 330

    [50]

    Turner A M, Vishwanath A 2013 arXiv:1301.0330

    [51]

    Murakami S 2007 New J. Phys. 9 356

    [52]

    Halasz G B, Balents L 2012 Phys. Rev. B 85 035103

    [53]

    Weng H, Fang H C, Fang Z, Bernevig B A, Dai X 2015 Phys. Rev. X 5 011029

    [54]

    Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J, Rappe A M 2012 Phys. Rev. Lett. 108 140405

    [55]

    Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X, Fang Z 2012 Phys. Rev. B 85 195320

    [56]

    Wang Z, Weng H, Wu Q, Dai X, Fang Z 2013 Phys. Rev. B 88 125427

    [57]

    Du Y, Wan B, Wang D, Sheng L, Duan C G, Wan X 2014 arXiv:1411.4394

    [58]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [59]

    Wilczek F 1987 Phys. Rev. Lett. 58 1799

    [60]

    Qi X L, Hughes T, Zhang S C 2008 Phys. Rev. B 78 195424

    [61]

    Li R, Wang J, Qi X L, Zhang S C 2010 Nature Phys. 6 284

    [62]

    Wang J, Li R, Zhang S C, Qi X L 2011 Phys. Rev. Lett. 106 126403

    [63]

    Malashevich A, Souzo I, Coh S, Vanderbilt D 2010 New J. Phys. 12 053032

    [64]

    Essin A M, Turner A M, Moore J E, Vanderbilt D 2010 Phys. Rev. B 81 205104

    [65]

    Essin A M, Moore J E, Vanderbilt D 2009 Phys. Rev. Lett. 102 146805

    [66]

    Teo J C Y, Kane C L 2010 Phys. Rev. B 82 115120

    [67]

    Dzero M, Sun K, Galitski V, Coleman P 2010 Phys. Rev. Lett. 104 106408

    [68]

    Fu L, Kane C L 2007 Phys. Rev. B 76 045302

    [69]

    Turner A M, Zhang Y, Mong R S K, Vishwanath A 2010 arXiv:1010.4335

    [70]

    Hughes T L, Prodan E, Bernevig B A 2010 arXiv:1010.4508

    [71]

    Padilla W J, Mandrus D, Basov D N 2002 Phys. Rev. B 66 035120

    [72]

    Shi Y G, Guo Y F, Yu S, Arai M, Belik A A, Sto A, Yamaura K, Takayama-Muromachi E, Tian H F, Yang H X, Li J Q, Varga T, Mitchell J F, Okamoto S 2009 Phys. Rev. B 80 161104

    [73]

    Blaha P, Schwarz K, Madsen G K H, Kvasnicka D, Luitz J 2001 WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Austria: Karlheinz Schwarz, Technische Universitat Wien)

    [74]

    Moriya T 1985 Spin Fluctuations in Itinerant Electron Magnetism (New York: Springer-Verlag)

    [75]

    Calder S, Garlea V O, McMorrow D F, Lumsden M D, Stone M B, Lang J C, Kim J W, Schlueter J A, Shi Y G, Yamaura K, Sun Y S, Tsujimoto Y, Christianson A D 2012 Phys. Rev. Lett. 108 257209

    [76]

    Shi Y, Guo Y, Wang X, Princep A J, Khalyavin D, Manuel P, Michiue Y, Sato A, Tsuda K, Yu S, Arai M, Shirako Y, Akaogi M, Wang N, Yamaura K, Boothroyd A T 2013 Nature Mat. 12 1024

    [77]

    Simand H, Kim B G 2014 Phys. Rev. B 89 201107

    [78]

    Xiang H J 2014 Phys. Rev. B 90 094108

    [79]

    Giovannetti G, Capone M 2014 Phys. Rev. B 90 195113

    [80]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [81]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [82]

    Inbar I, Cohen R E 1996 Phys. Rev. B 53 1193

    [83]

    Duan C G, Velev J P, Sabirianov R F, Zhu Z, Chu J, Jaswal S S, Tsymbal E Y 2008 Phys. Rev. Lett. 101 137201

    [84]

    Chikara S, Korneta O, Crummett W P, DeLong L E, Schlottmann P, Cao G 2009 Phys. Rev. B 80 140407(R)

    [85]

    Wang F, Senthil T 2011 Phys. Rev. Lett. 106 136402

    [86]

    Shitade A, Katsura H, Kunes J, Qi X L, Zhang S C, Nagaosa N 2009 Phys. Rev. Lett. 102 256403

    [87]

    Maiti K, Singh R S, Medicherla V R R, Rayaprol S, Sampathkumaran E V 2005 Phys. Rev. Lett. 95 016404

    [88]

    Cheng J G Zhou J S, Alonso J A, Goodenough J B, Sui Y, Matsubayashi K, Uwatoko Y 2009 Phys. Rev. B 80 104430

    [89]

    Jackeli G, Khaliulin G 2009 Phys. Rev. Lett. 102 017205

    [90]

    Okamoto T, Nohara M, Aruga-Katori H, Takagi H 2007 Phys. Rev. Lett. 99 137207

    [91]

    Lee P A 2008 Science 321 1306

    [92]

    Balents L 2010 Nature 464 199

  • [1] Xu Bing, Qiu Zi-Yang, Yang Run, Dai Yao-Min, Qiu Xiang-Gang. Optical properties of topological semimetals. Acta Physica Sinica, 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
    [2] Ma Jian-Hua, Sun Jing-Lan, Meng Xiang-Jian, Lin Tie, Shi Fu-Wen, Chu Jun-Hao. Dielectric and interface characteristics of SrTiO3 with a MIS structure. Acta Physica Sinica, 2005, 54(3): 1390-1395. doi: 10.7498/aps.54.1390
    [3] Wang Ze-Lin, Zhang Zhen-Hua, Zhao Zhe, Shao Rui-Wen, Sui Man-Ling. Mechanism of electrically driven metal-insulator phase transition in vanadium dioxide nanowires. Acta Physica Sinica, 2018, 67(17): 177201. doi: 10.7498/aps.67.20180835
    [4] Wu Chuan-Lu, Ma Ying, Jiang Li-Mei, Zhou Yi-Chun, Li Jian-Cheng. Computer simulation of electric properties of metal-ferroelectric-substrate structured ferroelectric field effect transistor under ionizing radiation. Acta Physica Sinica, 2014, 63(21): 216102. doi: 10.7498/aps.63.216102
    [5] CHHN FENG, YING HE-PING, XU TIE-FENG, LI WEN-ZHU. INSULATOR-METAL TRANSITION OF THE 2-D HALF-FILLED HUBBARD MODEL AT FINITE-TEMPERATURES. Acta Physica Sinica, 1994, 43(10): 1672-1676. doi: 10.7498/aps.43.1672
    [6] YU JIAN-HUA, SUN CHENG-XIU, ZHANG YOU-WEN, WEI TONG-LI, WANG MAO-XIANG. ELECTRON TUNNELING AND NEGATIVE DIFFERENTIAL RESISTANCE OF MIM LIGHT-EMISSION TUNNEL JUNCTION. Acta Physica Sinica, 1998, 47(2): 300-306. doi: 10.7498/aps.47.300
    [7] Zhang Da-Cheng, Shen Yan-Yan, Huang Yuan-Jie, Wang Zhuo, Liu Chang-Long. Theoretical study of nanoparticles in insulators fabricated by metal ion implantation. Acta Physica Sinica, 2010, 59(11): 7974-7978. doi: 10.7498/aps.59.7974
    [8] YANG YONG-HONG, XING DING-YU, GONG CHANG-DE. METAL-INSULATOR TRANSITION IN YBa2Cu3O7-x. Acta Physica Sinica, 1992, 41(1): 136-143. doi: 10.7498/aps.41.136
    [9] Liu Kun, Zhu Jun-Hao, Chen Shi-Wei, Zhao Jun, Tang Ding-Yuan. . Acta Physica Sinica, 1995, 44(7): 1137-1140. doi: 10.7498/aps.44.1137
    [10] Luo Ming-Hai, Xu Ma-Ji, Huang Qi-Wei, Li Pai, He Yun-Bin. Research progress of metal-insulator phase transition mechanism in VO2. Acta Physica Sinica, 2016, 65(4): 047201. doi: 10.7498/aps.65.047201
  • Citation:
Metrics
  • Abstract views:  908
  • PDF Downloads:  575
  • Cited By: 0
Publishing process
  • Received Date:  30 June 2015
  • Accepted Date:  18 August 2015
  • Published Online:  20 September 2015

Novel properties of 5d transition metal oxides

    Corresponding author: Wan Xian-Gang, xgwan@nju.edu.cn
  • 1. National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China;
  • 2. Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 11374137, 11174124).

Abstract: The spin-orbit coupling (SOC) in the 5d transition metal element is expected to be strong due to the large atomic number and ability to modify the electronic structure drastically. On the other hand, the Coulomb interaction in 5d transition is non-negligible. Hence, the interplay of electron correlations and strong spin-orbit interactions make the 5d transition metal oxides (TMOs) specially interesting for possible novel properties. In this paper, we briefly summarize our theoretical studies on the 5d TMO. In section 2, we systematically discuss pyrochlore iridates. We find that magnetic moments at Ir sites form a non-colinear pattern with moment on a tetrahedron pointing to all-in or all-out from the center. We propose that pyrochlore iridates be Weyl Semimetal (WSM), thus providing a condensed-matter realization of Weyl fermion that obeys a two-component Dirac equation. We find that Weyl points are robust against perturbation and further reveal that WSM exhibits remarkable topological properties manifested by surface states in the form of Fermi arcs, which is impossible to realize in purely two-dimensional band structures. In section 3, based on density functional calculation, we predict that spinel osmates (AOs2O4,A=m Ca,Sr) show a large magnetoelectric coupling characteristic of axion electrodynamics. They show ferromagnetic order in a reasonable range of the on-site Coulomb correlation U and exotic electronic properties, in particular, a large magnetoelectric coupling characteristic of axion electrodynamics. Depending on U, other electronic phases including a 3D WSM and Mott insulator are also shown to occur. In section 4, we comprehensively discuss the electronic and magnetic properties of Slater insulator NaOsO3, and successfully predict the magnetic ground state configuration of this compound. Its ground state is of a G-type antiferromagnet, and it is the combined effect of U and magnetic configuration that results in the insulating behavior of NaOsO3 We also discuss the novel properties of LiOsO3, and suggest that the highly anisotropic screening and the local dipole-dipole interactions are the two most important keys to forming LiOsO3-type metallic ferroelectricity in section 5. Using density-functional calculations, we systematically study the origin of the metallic ferroelectricity in LiOsO3. We confirm that the ferroelectric transition in this compound is order-disorder-like. By doing electron screening analysis, we unambiguously demonstrate that the long-range ferroelectric order in LiOsO3 results from the incomplete screening of the dipole-dipole interaction along the nearest-neighboring Li-Li chain direction.

Reference (92)

Catalog

    /

    返回文章
    返回