Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental research on laser-produced Gd target plasma source for 6.7 nm lithography

Dou Yin-Ping Xie Zhuo Song Xiao-Lin Tian Yong Lin Jing-Quan

Experimental research on laser-produced Gd target plasma source for 6.7 nm lithography

Dou Yin-Ping, Xie Zhuo, Song Xiao-Lin, Tian Yong, Lin Jing-Quan
PDF
Get Citation
  • Extreme ultraviolet (EUV) lithography at λ =6.7 nm is a challenging subject for next generation semiconductor lithography beyond 13.5 nm. The availability of strong radiation at the operating wavelength and low-debris of the plasma source are the two most important aspects for the development of laser-produced Gd plasma source at 6.7 nm. In this paper, experimental research on the extreme ultraviolet source based on the laser-produced Gd plasma is performed. Strong radiation near 6.7 nm from the source has been obtained, which is attributed to the n=4-n=4 transitions in Gd ions that overlap to yield an intense unresolved transition array (UTA). Dependence of spectral variation near the strong emission region of Gd plasma on the incident laser power density and detection angles is given. It is found that the intensity of EUV radiation around 6.7 nm is increased with increasing laser power density, and the emission peak around 7.1 nm increases faster than that of emission peak around 6.7 nm after the laser intensity reaching 6.4×1011 W/cm2, which is ascribed to the unique spectroscopic behavior of Gd ions. In addition, the energy of the ion debris from laser-produced Gd plasma source as well as the angular distribution of the ion yield off the target normal are measured with Faraday cup. Results show that the ion energy corresponding to the peak position of Gd ion energy distribution is about 2.6 keV at 10° off the target normal, and the yield of Gd ions decreases with the increase of the angle from the target normal. Furthermore, the stopping ability of an ambient magnetic field for ion debris from laser Gd plasma source is evaluated, and the result shows that the energetic Gd ion can be effectively mitigated by applying a 0.9 T magnetic field.
      Corresponding author: Lin Jing-Quan, linjingquan@cust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61178022), and the Science & Technology Department of Changchun City, China (Grant No. 14KP007).
    [1]

    Uwe Stamm 2004 J. Phys. D:Appl. Phys. 37 3244

    [2]

    Cai Y, Wang W T, Yang M, Liu J S, Lu P X, Li R X, Xu Z Z 2008 Acta Phys. Sin. 57 5100 (in Chinese) [蔡懿, 王文涛, 杨明, 刘建胜, 陆培祥, 李儒新, 徐至展 2008 物理学报 57 5100]

    [3]

    Chen H, Lan H, Chen Z Q, Liu L N, Wu T, Zuo D L, Lu P X, Wang X B 2015 Acta Phys. Sin. 64 075202 (in Chinese) [陈鸿, 兰慧, 陈子琪, 刘璐宁, 吴涛, 左都罗, 陆培祥, 王新兵 2015 物理学报 64 075202]

    [4]

    Koshelev K, Krivtsun V, Gayasov R, Yakushev O, Chekmarev A, Banine V, Glushkov D, Yakunin A International Workshop on EUV Sources 2010 Dublin, IrelandNov13-15

    [5]

    Wang H C, Wang Z S, Li F S, Qin S J, Du Y, Wang L, Zhang Z, Chen L Y 2004 Acta Phys. Sin. 53 2368 (in Chinese) [王洪昌, 王占山, 李佛生, 秦树基, 杜芸, 王利, 张众, 陈玲燕 2004 物理学报 53 2368]

    [6]

    Platonov Y 2010 Intl. Workshop on EUV Source 2010 Dublin, Ireland, Nov. 13-15 p31

    [7]

    Benschop J 2010 Proceedings of the 2010 International Workshop on EUVL Maui, HI

    [8]

    Li B, Otsuka T, Higashiguchi T, Yugami N, Jiang W, Endo A, Dunne P, O'Sullivan G 2012 Appl. Phys. Lett. 101 013112

    [9]

    Cummins T, Otsuka T, Yugami N, Jiang W, Endo A, Li B, O'Gorman C, Dunne P, Sokell E, O'Sullivan G, Higashiguchi T 2012 Appl. Phys. Lett. 100 06118

    [10]

    O'Sullivan G, Carroll P K 1981 J. Opt. Soc. Am. 71 227

    [11]

    Churilov S S, Kildiyarova R R, Ryabtsev A N, Sadovsky S V 2009 Phys. Scr. 80 045303

    [12]

    Otsuka T, Kilbane D, White J, Higashiguchi T, Yugami N, Yatagai T, Jiang W, Endo A, Dunne P, O'Sullivan G 2010 Appl. Phys. Lett. 97 111503

    [13]

    Morris O, O' Reilly F, Dunne P, Hayden P 2008 Appl. Phys. Lett. 92 231503

    [14]

    Dou Y P, Sun C K, Liu C Z, Gao J, Hao Z Q, Lin J Q 2014 Chin. Phys. B 23 075202

    [15]

    Suzuki C, Koike F, Murakami I, Tamura N, Sudo S, O'Gorman C, Li B, Harte C S, Donnelly T, O'Sullivan G 2013 Phys. Scr. 156 014078

    [16]

    Sugar J, Kaufman V, Rowan W L 1993 J. Opt. Soc. Am. B 10 1321

    [17]

    Sugar J, Kaufman V 1981 Phys. Scr. 24 742

    [18]

    Sugar J, Kaufman V, Rowan W L 1993 J. Opt. Soc. Am. B 10 799

    [19]

    Sugar J 1972 Phys. Rev. B 5 1785

    [20]

    Richter M, Meyer M, Pahler M, Presher T, Raven E V, Sonntag B, Wetzel H E 1989 Phys. Rev. A 40 7007

    [21]

    Harilal S S, O'Shay B, Tao Y, Tillack M S 2007 Appl. Phys. B 86 547

  • [1]

    Uwe Stamm 2004 J. Phys. D:Appl. Phys. 37 3244

    [2]

    Cai Y, Wang W T, Yang M, Liu J S, Lu P X, Li R X, Xu Z Z 2008 Acta Phys. Sin. 57 5100 (in Chinese) [蔡懿, 王文涛, 杨明, 刘建胜, 陆培祥, 李儒新, 徐至展 2008 物理学报 57 5100]

    [3]

    Chen H, Lan H, Chen Z Q, Liu L N, Wu T, Zuo D L, Lu P X, Wang X B 2015 Acta Phys. Sin. 64 075202 (in Chinese) [陈鸿, 兰慧, 陈子琪, 刘璐宁, 吴涛, 左都罗, 陆培祥, 王新兵 2015 物理学报 64 075202]

    [4]

    Koshelev K, Krivtsun V, Gayasov R, Yakushev O, Chekmarev A, Banine V, Glushkov D, Yakunin A International Workshop on EUV Sources 2010 Dublin, IrelandNov13-15

    [5]

    Wang H C, Wang Z S, Li F S, Qin S J, Du Y, Wang L, Zhang Z, Chen L Y 2004 Acta Phys. Sin. 53 2368 (in Chinese) [王洪昌, 王占山, 李佛生, 秦树基, 杜芸, 王利, 张众, 陈玲燕 2004 物理学报 53 2368]

    [6]

    Platonov Y 2010 Intl. Workshop on EUV Source 2010 Dublin, Ireland, Nov. 13-15 p31

    [7]

    Benschop J 2010 Proceedings of the 2010 International Workshop on EUVL Maui, HI

    [8]

    Li B, Otsuka T, Higashiguchi T, Yugami N, Jiang W, Endo A, Dunne P, O'Sullivan G 2012 Appl. Phys. Lett. 101 013112

    [9]

    Cummins T, Otsuka T, Yugami N, Jiang W, Endo A, Li B, O'Gorman C, Dunne P, Sokell E, O'Sullivan G, Higashiguchi T 2012 Appl. Phys. Lett. 100 06118

    [10]

    O'Sullivan G, Carroll P K 1981 J. Opt. Soc. Am. 71 227

    [11]

    Churilov S S, Kildiyarova R R, Ryabtsev A N, Sadovsky S V 2009 Phys. Scr. 80 045303

    [12]

    Otsuka T, Kilbane D, White J, Higashiguchi T, Yugami N, Yatagai T, Jiang W, Endo A, Dunne P, O'Sullivan G 2010 Appl. Phys. Lett. 97 111503

    [13]

    Morris O, O' Reilly F, Dunne P, Hayden P 2008 Appl. Phys. Lett. 92 231503

    [14]

    Dou Y P, Sun C K, Liu C Z, Gao J, Hao Z Q, Lin J Q 2014 Chin. Phys. B 23 075202

    [15]

    Suzuki C, Koike F, Murakami I, Tamura N, Sudo S, O'Gorman C, Li B, Harte C S, Donnelly T, O'Sullivan G 2013 Phys. Scr. 156 014078

    [16]

    Sugar J, Kaufman V, Rowan W L 1993 J. Opt. Soc. Am. B 10 1321

    [17]

    Sugar J, Kaufman V 1981 Phys. Scr. 24 742

    [18]

    Sugar J, Kaufman V, Rowan W L 1993 J. Opt. Soc. Am. B 10 799

    [19]

    Sugar J 1972 Phys. Rev. B 5 1785

    [20]

    Richter M, Meyer M, Pahler M, Presher T, Raven E V, Sonntag B, Wetzel H E 1989 Phys. Rev. A 40 7007

    [21]

    Harilal S S, O'Shay B, Tao Y, Tillack M S 2007 Appl. Phys. B 86 547

  • [1] Thermodynamics of Laser Plasma Removal of Micro and Nano Particles. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191933
    [2] Liu Jia-He, Lu Jia-Zhe, Lei Jun-Jie, Gao Xun, Lin Jing-Quan. Effect of ambient gas pressure on characteristics of air plasma induced by nanosecond laser. Acta Physica Sinica, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [3] Diagnosis of capacitively coupled plasma driven by pulse-modulated 27.12 MHz by using an emissive probe. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191864
    [4] Yang Jin, Chen Jun, Wang Fu-Di, Li Ying-Ying, Lü Bo, Xiang Dong, Yin Xiang-Hui, Zhang Hong-Ming, Fu Jia, Liu Hai-Qing, Zang Qing, Chu Yu-Qi, Liu Jian-Wen, Wang Xun-Yu, Bin Bin, He Liang, Wan Shun-Kuan, Gong Xue-Yu, Ye Min-You. Experimental investigation of lower hybrid current drive induced plasma rotation on the experimental advanced superconducting tokamak. Acta Physica Sinica, 2020, 69(5): 055201. doi: 10.7498/aps.69.20191716
    [5] Anisotropic Dissipation in a Dipolar Bose-Einstein Condensate. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200025
    [6] Zhang Ya-Nan, Zhan Nan, Deng Ling-Ling, Chen Shu-Fen. Efficiency improvement in solution-processed multilayered phosphorescent white organic light emitting diodes by silica coated silver nanocubes. Acta Physica Sinica, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [7] Dong Zheng-Qiong, Zhao Hang, Zhu Jin-Long, Shi Ya-Ting. Influence of incident illumination on optical scattering measurement of typical photoresist nanostructure. Acta Physica Sinica, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [8] Internal dynamic detection of soliton molecules in a Ti: sapphire femtosecond laser. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191989
    [9] Effect of Swift Heavy Ions Irradiation on the Microstructure and Current-Carrying Capability in YBa2Cu3O7-δ High Temperature Superconductor Films. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191914
    [10] Liu Hou-Tong, Mao Min-Juan. An accurate inversion method of aerosol extinction coefficient about ground-based lidar without needing calibration. Acta Physica Sinica, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [11] Identifying two different configurations of the H32+ by the direct above-threshold ionization spectrum in two-color laser field. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200013
    [12] Zhang Ji-Ye, Zhang Jian-Wei, Zeng Yu-Gang, Zhang Jun, Ning Yong-Qiang, Zhang Xing, Qin Li, Liu Yun, Wang Li-Jun. Design of gain region of high-power vertical external cavity surface emitting semiconductor laser and its fabrication. Acta Physica Sinica, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [13] Investigate the effect of source-drain conduction in single-event transient on nanoscale bulk fin field effect transistor. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191896
  • Citation:
Metrics
  • Abstract views:  396
  • PDF Downloads:  158
  • Cited By: 0
Publishing process
  • Received Date:  03 April 2015
  • Accepted Date:  13 July 2015
  • Published Online:  05 December 2015

Experimental research on laser-produced Gd target plasma source for 6.7 nm lithography

    Corresponding author: Lin Jing-Quan, linjingquan@cust.edu.cn
  • 1. School of Science, Changchun University of Science and Technology, Changchun 130022, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 61178022), and the Science & Technology Department of Changchun City, China (Grant No. 14KP007).

Abstract: Extreme ultraviolet (EUV) lithography at λ =6.7 nm is a challenging subject for next generation semiconductor lithography beyond 13.5 nm. The availability of strong radiation at the operating wavelength and low-debris of the plasma source are the two most important aspects for the development of laser-produced Gd plasma source at 6.7 nm. In this paper, experimental research on the extreme ultraviolet source based on the laser-produced Gd plasma is performed. Strong radiation near 6.7 nm from the source has been obtained, which is attributed to the n=4-n=4 transitions in Gd ions that overlap to yield an intense unresolved transition array (UTA). Dependence of spectral variation near the strong emission region of Gd plasma on the incident laser power density and detection angles is given. It is found that the intensity of EUV radiation around 6.7 nm is increased with increasing laser power density, and the emission peak around 7.1 nm increases faster than that of emission peak around 6.7 nm after the laser intensity reaching 6.4×1011 W/cm2, which is ascribed to the unique spectroscopic behavior of Gd ions. In addition, the energy of the ion debris from laser-produced Gd plasma source as well as the angular distribution of the ion yield off the target normal are measured with Faraday cup. Results show that the ion energy corresponding to the peak position of Gd ion energy distribution is about 2.6 keV at 10° off the target normal, and the yield of Gd ions decreases with the increase of the angle from the target normal. Furthermore, the stopping ability of an ambient magnetic field for ion debris from laser Gd plasma source is evaluated, and the result shows that the energetic Gd ion can be effectively mitigated by applying a 0.9 T magnetic field.

Reference (21)

Catalog

    /

    返回文章
    返回