Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation of bright squeezed light at 1.5 m telecommunication band and its Wigner function reconstruction

Sun Zhi-Ni Feng Jin-Xia Wan Zhen-Ju Zhang Kuan-Shou

Generation of bright squeezed light at 1.5 m telecommunication band and its Wigner function reconstruction

Sun Zhi-Ni, Feng Jin-Xia, Wan Zhen-Ju, Zhang Kuan-Shou
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The squeezed light at 1.5 m telecommunication band has been considered as an important resource of continuous variable (CV) practical fiber-based quantum information research because it is the lowest loss in fiber. A bright phase quadrature squeezed light for continuous variable at 1.5 m is demonstrated from a semi-monolithic degenerate optical parametric amplifier (DOPA) based on a periodically poled KTiOPO4 (PPKTP) crystal. The laser source is a continuous wave (CW) single-frequency fiber laser at 1.5 m, which is sent through a ring mode cleaner (MC) as a preliminary spatial and noise filter. And then the main portion of the output from the MC is used for external-enhanced second harmonic generation to obtain a CW single-frequency low noise laser at 780 nm that acts as the pump of the DOPA. The residual light of the output from the MC at 1.5 m is used as the injected signal light of the DOPA and the local oscillator (LO) of a balanced homodyne detector (BHD) system. The DOPA is built by using a type-I PPKTP crystal and a piezo-actuated output coupler and works in double-resonance case with a threshold power of 230 mW. When the DOPA is operating in the state of amplification, the output down-conversion field should be a bright phase quadrature squeezed light, where the relative phase between the pump and the injected signal is locked to 0. A 4.7 dB bright phase quadrature squeezed light is measured by the BHD system with the pump light of 110 mW and the injected signal of 3 mW, where the relative phase between the down-conversion field and the LO is locked to 0. Our measurement is limited by the optical losses and the detection efficiency. We have taken into account the detection efficiency of 86.6%, and the actual squeezing of the squeezed light being 6.3 dB. Moreover, because it is so crucial a process for CV quantum information system that the transmission and evolution of the CV squeezed states in the fiber may reappear in all information of the quantum states in the phase space, then the bright squeezed light is detected by a BHD system in the time domain, and its Wigner quasi-probability distribution function can be reconstructed by using a quantum tomographic technique. Furthermore, the bright squeezed state at 1.5 m is an ideal source for fiber-based long-distance quantum information because of its stability and bright mean field.
      Corresponding author: Feng Jin-Xia, fengjx@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61227015, 11204167, 61405109) and the Shanxi Scholarship Council, China (Grant No. 2012-003).
    [1]

    Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472

    [2]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1300

    [3]

    Xiao M, Wu LA, Kimble H J 1987 Phys. Rev. Lett. 59 278

    [4]

    Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602

    [5]

    Dantan A, Pinard M 2004 Phys. Rev. A 69 043810

    [6]

    Furusawa A, Serensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706

    [7]

    Zhai Z H, Li Y M, Wang S K, Guo J, Zhang T C, Gao J R 2005 Acta Phys. Sin. 54 2710 (in Chinese) [翟泽辉, 李永明, 王少凯, 郭娟, 张天才, 郜江瑞 2005 物理学报 54 2710]

    [8]

    Jing J T, Zhang J, Yan Y, Zhao F G, Xie C D, Peng K C 2003 Phys. Rev. Lett. 90 167903

    [9]

    Lee H, Ahn D, Hwang S W 2002 Phys. Rev. A 66 024304

    [10]

    Moskal S, Bednarek S, Adamowski J 2007 Phys. Rev. A 76 032302

    [11]

    Schmitt-Manderbach T, Weier H, Furst M, Ursin R, Tiefenbacher F, Scheidl T, Perdigues J, Sodnik Z, Kursiefer C, Rarity J G, Zeilinger A, Weinfurter H 2007 Phys. Rev. Lett. 98 010504

    [12]

    Wu L A, Kimble H J, Hall J H, Wu H F 1986 Phys. Rev. Lett. 57 2520

    [13]

    Wu L A, Xiao M, Kimble H J 1987 J. Opt. Soc. Am. B 4 1465

    [14]

    Peng K C, Pan Q, Wang H, Zhang Y, Su H, Xie C D 1998 Appl. Phys. B 66 755

    [15]

    Breitenbach G, Muler T, Pereira S F, Poizat J P, Schiller S, Mlynek J 1995 J. Opt. Soc. Am. B 12 2304

    [16]

    Lam P K, Ralph T C, Buchler B C, Mcclelland D E, Bachor H A, Gao J 1999 J. Opt. B: Quan. Semiclass Opt. 1 469

    [17]

    Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321

    [18]

    Eberle T, Hndchen V, Duhme J, Franz T, Werner R F, Schnabel R 2011 Phys. Rev. A 83 052329

    [19]

    Schiller S, Breitenbach G, Pereira S F, Paschotta R, White A G, Mlynek J 1995 Proc. SPIE 2378 91

    [20]

    Schneider K, Bruchmeier R, HanSen H, Schiller S, Mlynek J 1996 Opt. Lett. 21 1396

    [21]

    Ma H L, Wei D, Ye C G, Zhang J, Peng K C 2005 Acta Phys. Sin. 54 3637 (in Chinese) [马红亮, 卫栋, 叶晨光, 张靖, 彭堃墀 2005 物理学报 54 3637]

    [22]

    Feng J X, Tian X T, Li Y M, Zhang K S 2008 Appl. Phys. Lett. 92 221102

    [23]

    Liu Q, Feng J X, Li H, Jiao Y C, Zhang K S 2012 Chin. Phys. B 21 104204

    [24]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763

    [25]

    Wu Z Q, Zhou H J, Wang Y J, Zheng Y H 2013 Acta Sin. Quan. Opt. 19 1 (in Chinese) [邬志强, 周海军, 王雅君, 郑耀辉2013 量子光学学报 19 1 ]

    [26]

    Black E D 2001 Am. J. Phys. 69 79

    [27]

    Li H, Feng J X, Wan Z J, Zhang K S 2014 Chin. J. Lasers 41 0502003 (in Chinese) [李宏, 冯晋霞, 万振菊, 张宽收 2014 中国激光 41 0502003]

    [28]

    Wigner E 1932 Phys. Rev. 40 749

    [29]

    Fano U 1957 Rev. Mod. Phys. 29 74

    [30]

    Vogel K, Risken H 1989 Phys. Rev. A 40 2847

    [31]

    Schiller S, Breitenbach G, Pereira S F, Muller T, Mlynek J 1996 Phys. Rev. Lett. 77 2933

    [32]

    Lvovsky A I, Hansen H, Aichele T, Benson O, Mlynek J, Schiller S 2001 Phys. Rev. Lett. 87 050402

    [33]

    Ye C G, Zhang J 2008 Acta Phys. Sin. 57 6962 (in Chinese) [叶晨光, 张靖 2008 物理学报 57 6962]

  • [1]

    Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472

    [2]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1300

    [3]

    Xiao M, Wu LA, Kimble H J 1987 Phys. Rev. Lett. 59 278

    [4]

    Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602

    [5]

    Dantan A, Pinard M 2004 Phys. Rev. A 69 043810

    [6]

    Furusawa A, Serensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706

    [7]

    Zhai Z H, Li Y M, Wang S K, Guo J, Zhang T C, Gao J R 2005 Acta Phys. Sin. 54 2710 (in Chinese) [翟泽辉, 李永明, 王少凯, 郭娟, 张天才, 郜江瑞 2005 物理学报 54 2710]

    [8]

    Jing J T, Zhang J, Yan Y, Zhao F G, Xie C D, Peng K C 2003 Phys. Rev. Lett. 90 167903

    [9]

    Lee H, Ahn D, Hwang S W 2002 Phys. Rev. A 66 024304

    [10]

    Moskal S, Bednarek S, Adamowski J 2007 Phys. Rev. A 76 032302

    [11]

    Schmitt-Manderbach T, Weier H, Furst M, Ursin R, Tiefenbacher F, Scheidl T, Perdigues J, Sodnik Z, Kursiefer C, Rarity J G, Zeilinger A, Weinfurter H 2007 Phys. Rev. Lett. 98 010504

    [12]

    Wu L A, Kimble H J, Hall J H, Wu H F 1986 Phys. Rev. Lett. 57 2520

    [13]

    Wu L A, Xiao M, Kimble H J 1987 J. Opt. Soc. Am. B 4 1465

    [14]

    Peng K C, Pan Q, Wang H, Zhang Y, Su H, Xie C D 1998 Appl. Phys. B 66 755

    [15]

    Breitenbach G, Muler T, Pereira S F, Poizat J P, Schiller S, Mlynek J 1995 J. Opt. Soc. Am. B 12 2304

    [16]

    Lam P K, Ralph T C, Buchler B C, Mcclelland D E, Bachor H A, Gao J 1999 J. Opt. B: Quan. Semiclass Opt. 1 469

    [17]

    Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321

    [18]

    Eberle T, Hndchen V, Duhme J, Franz T, Werner R F, Schnabel R 2011 Phys. Rev. A 83 052329

    [19]

    Schiller S, Breitenbach G, Pereira S F, Paschotta R, White A G, Mlynek J 1995 Proc. SPIE 2378 91

    [20]

    Schneider K, Bruchmeier R, HanSen H, Schiller S, Mlynek J 1996 Opt. Lett. 21 1396

    [21]

    Ma H L, Wei D, Ye C G, Zhang J, Peng K C 2005 Acta Phys. Sin. 54 3637 (in Chinese) [马红亮, 卫栋, 叶晨光, 张靖, 彭堃墀 2005 物理学报 54 3637]

    [22]

    Feng J X, Tian X T, Li Y M, Zhang K S 2008 Appl. Phys. Lett. 92 221102

    [23]

    Liu Q, Feng J X, Li H, Jiao Y C, Zhang K S 2012 Chin. Phys. B 21 104204

    [24]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763

    [25]

    Wu Z Q, Zhou H J, Wang Y J, Zheng Y H 2013 Acta Sin. Quan. Opt. 19 1 (in Chinese) [邬志强, 周海军, 王雅君, 郑耀辉2013 量子光学学报 19 1 ]

    [26]

    Black E D 2001 Am. J. Phys. 69 79

    [27]

    Li H, Feng J X, Wan Z J, Zhang K S 2014 Chin. J. Lasers 41 0502003 (in Chinese) [李宏, 冯晋霞, 万振菊, 张宽收 2014 中国激光 41 0502003]

    [28]

    Wigner E 1932 Phys. Rev. 40 749

    [29]

    Fano U 1957 Rev. Mod. Phys. 29 74

    [30]

    Vogel K, Risken H 1989 Phys. Rev. A 40 2847

    [31]

    Schiller S, Breitenbach G, Pereira S F, Muller T, Mlynek J 1996 Phys. Rev. Lett. 77 2933

    [32]

    Lvovsky A I, Hansen H, Aichele T, Benson O, Mlynek J, Schiller S 2001 Phys. Rev. Lett. 87 050402

    [33]

    Ye C G, Zhang J 2008 Acta Phys. Sin. 57 6962 (in Chinese) [叶晨光, 张靖 2008 物理学报 57 6962]

  • [1] Liu Kui, Ma Long, Su Bi-Da, Li Jia-Ming, Sun Heng-Xin, Gao Jiang-Rui. Generation of continuous variable frequency comb entanglement based on nondegenerate optical parametric amplifier. Acta Physica Sinica, 2020, 69(12): 124203. doi: 10.7498/aps.69.20200107
    [2] Ye Chen-Guang, Zhang Jing. Generation of squeezed vacuum states by PPKTP crystal and its Wigner quasi-probability distribution function reconstruction. Acta Physica Sinica, 2008, 57(11): 6962-6967. doi: 10.7498/aps.57.6962
    [3] Zhao Chao-Ying, Tan Wei-Han. Quantum fluctuations of the optical parametric amplification system under the consideration of dispersion. Acta Physica Sinica, 2010, 59(4): 2498-2504. doi: 10.7498/aps.59.2498
    [4] Yan Xiao-Bo, Yang Liu, Tian Xue-Dong, Liu Yi-Mou, Zhang Yan. Optomechanically induced transparency and normal mode splitting in an optical parametric amplifier cavity. Acta Physica Sinica, 2014, 63(20): 204201. doi: 10.7498/aps.63.204201
    [5] Deng Jun-Hong, Li Gui-Xin. Nonlinear photonic metasurfaces. Acta Physica Sinica, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [6] Xu Xin, Jin Xue-Ying, Hu Xiao-Hong, Huang Xin-Ning. Spatiotemporal evolution and spectral character of second harmonic generation in optical microresonator. Acta Physica Sinica, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [7] Bai Rui-Xue, Yang Jue-Han, Wei Da-Hai, Wei Zhong-Ming. Research progress of low-dimensional semiconductor materials in field of nonlinear optics. Acta Physica Sinica, 2020, 69(18): 184211. doi: 10.7498/aps.69.20200206
    [8] Liang Xiao-Rui, Zhao Bo, Zhou Zhi-Hua. Ab initio study on the second-order nonlinear optical properties of some coumarin derivatives. Acta Physica Sinica, 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [9] Yang Guang, Chen Zheng-Hao. Large optical nonlinearities in Ag-doped BaTiO3 nanocomposite films. Acta Physica Sinica, 2007, 56(2): 1182-1187. doi: 10.7498/aps.56.1182
    [10] Gao Yun, Huang Xiao-Ming, Tao Li-Min, Guo Ya-Hui, Wang Chuan-Kui. Theoretical studies of nonlinear optical properties of a novel double-conjugated-segment molecule. Acta Physica Sinica, 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [11] Zhang Ming-Xin, Wu Ke-Chen, Liu Cai-Ping, Wei Yong-Qin. Computational study on the exchange-correlation function in density functional theory and optical nonlinearity of transition-metal complexes. Acta Physica Sinica, 2005, 54(4): 1762-1770. doi: 10.7498/aps.54.1762
    [12] Lu Jing-Jing, Feng Miao, Zhan Hong-Bing. Preparation of graghene oxide/chitosan composite films and investigations on their nonlinear optical limiting effect. Acta Physica Sinica, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [13] Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong. Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures. Acta Physica Sinica, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [14] Ma Ya-Yun, Feng Jin-Xia, Wan Zhen-Ju, Gao Ying-Hao, Zhang Kuan-Shou. Continuous variable quantum entanglement at 1.34 m. Acta Physica Sinica, 2017, 66(24): 244205. doi: 10.7498/aps.66.244205
    [15] Wan Zhen-Ju, Feng Jin-Xia, Cheng Jian, Zhang Kuan-Shou. Experimental investigation of transmission characteristics of continuous variable entangled state over optical fibers. Acta Physica Sinica, 2018, 67(2): 024203. doi: 10.7498/aps.67.20171542
    [16] Zhou Wen-Yuan, Tian Jian-Guo, Zang Wei-Ping, Zhang Chun-Ping, Zhang Guang-Yin, Wang Zhao-Qi. . Acta Physica Sinica, 2002, 51(11): 2623-2628. doi: 10.7498/aps.51.2623
    [17] Li Juan, Li Jia-Ming, Cai Chun-Xiao, Sun Heng-Xin, Liu Kui, Gao Jiang-Rui. Enhancement of continuous-variable hyperentanglement by optimizing pump mode. Acta Physica Sinica, 2019, 68(3): 034204. doi: 10.7498/aps.68.20181625
    [18] Feng Tian-Run, Lu Ke-Qing, Chen Wei-Jun, Liu Shu-Qin, Niu Ping-Juan, Yu Li-Yuan. Study on surface waves formed at the interface between linear dielectric and centrosymmetric photorefractive crystals. Acta Physica Sinica, 2013, 62(23): 234205. doi: 10.7498/aps.62.234205
    [19] Sun Bo, Liu Jin-Song, Ling Fu-Ri, Wang Ke-Jia, Zhu Da-Qing, Yao Jian-Quan. Investigation of the operation characteristics of terahertz-wave parametric oscillator based on LiTaO3. Acta Physica Sinica, 2009, 58(3): 1745-1751. doi: 10.7498/aps.58.1745
    [20] Zhang Xian-Bin, Shi Wei. Optimize the output performance by shortening the cavity length of the THz electromagnetic wave parametric oscillator. Acta Physica Sinica, 2006, 55(10): 5237-5241. doi: 10.7498/aps.55.5237
  • Citation:
Metrics
  • Abstract views:  998
  • PDF Downloads:  131
  • Cited By: 0
Publishing process
  • Received Date:  15 September 2015
  • Accepted Date:  26 October 2015
  • Published Online:  05 February 2016

Generation of bright squeezed light at 1.5 m telecommunication band and its Wigner function reconstruction

    Corresponding author: Feng Jin-Xia, fengjx@sxu.edu.cn
  • 1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 61227015, 11204167, 61405109) and the Shanxi Scholarship Council, China (Grant No. 2012-003).

Abstract: The squeezed light at 1.5 m telecommunication band has been considered as an important resource of continuous variable (CV) practical fiber-based quantum information research because it is the lowest loss in fiber. A bright phase quadrature squeezed light for continuous variable at 1.5 m is demonstrated from a semi-monolithic degenerate optical parametric amplifier (DOPA) based on a periodically poled KTiOPO4 (PPKTP) crystal. The laser source is a continuous wave (CW) single-frequency fiber laser at 1.5 m, which is sent through a ring mode cleaner (MC) as a preliminary spatial and noise filter. And then the main portion of the output from the MC is used for external-enhanced second harmonic generation to obtain a CW single-frequency low noise laser at 780 nm that acts as the pump of the DOPA. The residual light of the output from the MC at 1.5 m is used as the injected signal light of the DOPA and the local oscillator (LO) of a balanced homodyne detector (BHD) system. The DOPA is built by using a type-I PPKTP crystal and a piezo-actuated output coupler and works in double-resonance case with a threshold power of 230 mW. When the DOPA is operating in the state of amplification, the output down-conversion field should be a bright phase quadrature squeezed light, where the relative phase between the pump and the injected signal is locked to 0. A 4.7 dB bright phase quadrature squeezed light is measured by the BHD system with the pump light of 110 mW and the injected signal of 3 mW, where the relative phase between the down-conversion field and the LO is locked to 0. Our measurement is limited by the optical losses and the detection efficiency. We have taken into account the detection efficiency of 86.6%, and the actual squeezing of the squeezed light being 6.3 dB. Moreover, because it is so crucial a process for CV quantum information system that the transmission and evolution of the CV squeezed states in the fiber may reappear in all information of the quantum states in the phase space, then the bright squeezed light is detected by a BHD system in the time domain, and its Wigner quasi-probability distribution function can be reconstructed by using a quantum tomographic technique. Furthermore, the bright squeezed state at 1.5 m is an ideal source for fiber-based long-distance quantum information because of its stability and bright mean field.

Reference (33)

Catalog

    /

    返回文章
    返回