Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

One color resonance two-photon ionization spectra of p-methoxybenzonitrile

Li Xin Zhao Yan Jin Ying-Hui Wang Xiao-Rui Yu Xie-Qiu Wu Mei Han Yu-Xing Yang Yong-Gang Li Chang-Yong Jia Suo-Tang

One color resonance two-photon ionization spectra of p-methoxybenzonitrile

Li Xin, Zhao Yan, Jin Ying-Hui, Wang Xiao-Rui, Yu Xie-Qiu, Wu Mei, Han Yu-Xing, Yang Yong-Gang, Li Chang-Yong, Jia Suo-Tang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • p-methoxybenzonitrile is an important chemical and industrial material which has been widely used in many fields, such as medicine, chemistry, photoelectron, etc. In this paper, we use the technologies of supersonic molecular beam, resonance enhanced multiphoton ionization and time-of-flight mass spectrometer to obtain the high-resolution one color resonance two-photon ionization spectra of p-methoxybenzonitrile in a vibrational wavenumber range of 0-2400 cm-1. In order to analyze the experimental results, the theoretical calculations are performed. The molecular structure, energy, and vibration frequencies at the electronic excited state S1 are computed with time-dependent density functional theory at the level of B3PW91/6-311 g++**. According to the calculated results, the observed bands are assigned by the method of Varsanyi and Szoke. The band origin of the S1S0 electronic transition of p-methoxybenzonitrile is determined to be (355492) cm-1. A lot of vibrational bands of the electronic excited state S1 are observed. The results show that the vibrational modes of 9b, 6b, 15 and 1 are very easy to activate in a wavenumber range of 0-800 cm-1. There are also a lot of intense bands in a wavenumber range of 800-1600 cm-1. In addition to the fundamental vibrations, many combined vibrations between breathing and other fundamental vibrations are found. Several vibrations in this range are located at OCH3 and CN group. Most of the bands in a range of 1600-2400 cm-1 correspond to ones in the range of 800-1600 cm-1. Except for the bands appearing at 1664 and 2156 cm-1, which are assigned to 15011301 and (CN) (CN stretching) respectively, the remaining bands in the range of 1600-2400 cm-1 are assigned as the combined vibrations between the breathing and the corresponding modes in the range of 800-1600 cm-1, i.e., the combined vibrations between the breathing overtone and other fundamental modes. Our theoretical calculations show that except for CN stretching vibration at 2162 cm-1, there is no fundamental frequency in a range of 1600-3000 cm-1, which is consistent with our experimental result and assignment. The fundamental of the breathing vibration 11 and its second overtone vibration 12 are very strong. The third overtone frequency 13 can be identified unambiguously. This is an important characteristic of p-methoxybenzonitrile, which is different from that of the usual polyatomic molecule. These results provide important reference for future researches on Rydberg states, chemical kinetics and zero kinetic energy spectroscopy of p-methoxybenzonitrile.
      Corresponding author: Li Chang-Yong, lichyong@sxu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the National Natural Science Foundation of China (Grant Nos. 61378039, 61575115, 11434007), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT13076), and the Construction of State Key Laboratory of Quantum Optics and Quantum Optics Devices, China (Grant No. 2015012001-20).
    [1]

    Huang L C L, Lin J L, Tzeng W B 2000 Chem. Phys. 261 449

    [2]

    Li C Y, Pradhan M, Tzeng W B 2005 Chem. Phys. Lett. 411 506

    [3]

    Huang J G, Li C Y, Tzeng W B 2005 Chem. Phys. Lett. 414 276

    [4]

    Li C Y, Su H, Tzeng W B 2005 Chem. Phys. Lett. 410 99

    [5]

    Lui Y H, McGlynn S P 1975 J. Mol. Spectrosc. 55 163

    [6]

    Bocharov V N, Bureiko S F, Golubev N S, Shajakhmedov S S 1998 J. Mol. Stuct. 444 57

    [7]

    Fleminga G D, Golsioa I, Aracena A, Celis F, Vera L, Koch R, Campos-Vallette M 2008 Spectrchim. Acta A 71 1074

    [8]

    Liu H, Li M, Xie X G, Wu C, Deng Y K, Wu C Y, Gong Q H, Liu Y Q 2015 Chin. Phys. Lett. 32 063301

    [9]

    Zhang J F, Lu H, Zuo W L, Xu H F, Jin M X, Ding D J 2015 Chin. Phys. B 24 113301

    [10]

    Chen Z, Tong Q N, Zhang C C, Hu Z 2015 Chin. Phys. B 24 043303

    [11]

    Kroto H W, Heath J R, OBrien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [12]

    Posthumus J 2001 Molecules and Clusters in Intense Laser Fields (New York: Cabridge University Press) pp84-112

    [13]

    Yao G X, Wang X L, Du C M, Li H M, Zhang X Y, Zheng X F, Ji X H, Cui Z F 2006 Acta Phys. Sin. 55 2210 (in Chinese) [姚关心, 王小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤 2006 物理学报 55 2210]

    [14]

    Zhang Q, Li X, Zhao Y, Yang Y G, Li C Y, Jia S T 2016 Acta Sin. Quan. Opt. 22 115 (in Chinese) [张庆, 李鑫, 赵岩, 杨勇刚, 李昌勇, 贾锁堂 2016 量子光学学报 22 115]

    [15]

    Tzeng W B, Lin J L 1999 J. Phys. Chem. A 103 8612

    [16]

    Wang Y, Yao Z, Feng C L, Liu J H, Ding H B 2012 Acta Phys. Sin. 61 013301 (in Chinese) [王燕, 姚志, 冯春雷, 刘佳宏, 丁洪斌 2012 物理学报 61 013301]

    [17]

    Song K, Hayes J M 1989 J. Mol. Spectrosc. 134 82

    [18]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, et al. 2009 Gaussian 09 (Pittsburgh: Gaussian Inc.)

    [19]

    Li C Y, Lin J L, Tzeng W B 2005 J. Chem. Phys. 122 044311

    [20]

    Varsanyi G, Szoke S 1969 Vibrational spectra of Benzene Derivatives (New York and London: Academic Press) p129

    [21]

    Varsanyi G 1974 Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives (New York: Halsred Press) p185

  • [1]

    Huang L C L, Lin J L, Tzeng W B 2000 Chem. Phys. 261 449

    [2]

    Li C Y, Pradhan M, Tzeng W B 2005 Chem. Phys. Lett. 411 506

    [3]

    Huang J G, Li C Y, Tzeng W B 2005 Chem. Phys. Lett. 414 276

    [4]

    Li C Y, Su H, Tzeng W B 2005 Chem. Phys. Lett. 410 99

    [5]

    Lui Y H, McGlynn S P 1975 J. Mol. Spectrosc. 55 163

    [6]

    Bocharov V N, Bureiko S F, Golubev N S, Shajakhmedov S S 1998 J. Mol. Stuct. 444 57

    [7]

    Fleminga G D, Golsioa I, Aracena A, Celis F, Vera L, Koch R, Campos-Vallette M 2008 Spectrchim. Acta A 71 1074

    [8]

    Liu H, Li M, Xie X G, Wu C, Deng Y K, Wu C Y, Gong Q H, Liu Y Q 2015 Chin. Phys. Lett. 32 063301

    [9]

    Zhang J F, Lu H, Zuo W L, Xu H F, Jin M X, Ding D J 2015 Chin. Phys. B 24 113301

    [10]

    Chen Z, Tong Q N, Zhang C C, Hu Z 2015 Chin. Phys. B 24 043303

    [11]

    Kroto H W, Heath J R, OBrien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [12]

    Posthumus J 2001 Molecules and Clusters in Intense Laser Fields (New York: Cabridge University Press) pp84-112

    [13]

    Yao G X, Wang X L, Du C M, Li H M, Zhang X Y, Zheng X F, Ji X H, Cui Z F 2006 Acta Phys. Sin. 55 2210 (in Chinese) [姚关心, 王小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤 2006 物理学报 55 2210]

    [14]

    Zhang Q, Li X, Zhao Y, Yang Y G, Li C Y, Jia S T 2016 Acta Sin. Quan. Opt. 22 115 (in Chinese) [张庆, 李鑫, 赵岩, 杨勇刚, 李昌勇, 贾锁堂 2016 量子光学学报 22 115]

    [15]

    Tzeng W B, Lin J L 1999 J. Phys. Chem. A 103 8612

    [16]

    Wang Y, Yao Z, Feng C L, Liu J H, Ding H B 2012 Acta Phys. Sin. 61 013301 (in Chinese) [王燕, 姚志, 冯春雷, 刘佳宏, 丁洪斌 2012 物理学报 61 013301]

    [17]

    Song K, Hayes J M 1989 J. Mol. Spectrosc. 134 82

    [18]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, et al. 2009 Gaussian 09 (Pittsburgh: Gaussian Inc.)

    [19]

    Li C Y, Lin J L, Tzeng W B 2005 J. Chem. Phys. 122 044311

    [20]

    Varsanyi G, Szoke S 1969 Vibrational spectra of Benzene Derivatives (New York and London: Academic Press) p129

    [21]

    Varsanyi G 1974 Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives (New York: Halsred Press) p185

  • [1] Yang Yue-Bin, Zuo Wen-Long, Bao Yan-Xiang, Liu Shu-Yu, Li Long-Fei, Zhang Jin-Xiu, Xiong Xiao-Min. Detection of a coupled vibration by mechanical resonant absorption spectra. Acta Physica Sinica, 2012, 61(20): 200509. doi: 10.7498/aps.61.200509
    [2] Wang Xiao-Li,  Yao Guan-Xin,  Yang Xin-Yan,  Qin Zheng-Bo,  Zheng Xian-Feng,  Cui Zhi-Feng. Experimental investigation on ultraviolet multiphoton dissociation dynamics of methylamine. Acta Physica Sinica, 2018, 67(24): 243301. doi: 10.7498/aps.67.20181731
    [3] Zhang Hui-Peng, Jin Qing-Hua, Wang Yu-Fang, Li Bao-Hui, Ding Da-Tong. Effect of single-wall carbon nanotubes’chiral angle for the phonon frequency. Acta Physica Sinica, 2005, 54(9): 4279-4284. doi: 10.7498/aps.54.4279
    [4] Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Jiang Xiao-Wei, Zhu Yan. Numerical simulation of particle segregation behavior in different vibration modes. Acta Physica Sinica, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [5] Zhang Ji, Wang Di, Zhang De-Ming, Zhang Qing-Li, Wan Song-Ming, Sun Dun-Lu, Yin Shao-Tang. Temperature-dependent Raman spectroscopic study on orthophosphates Ba3(PO4)2 and Sr3(PO4)2. Acta Physica Sinica, 2013, 62(9): 097802. doi: 10.7498/aps.62.097802
    [6] Zhou Hai-Liang, Gu Qing-Tian, Zhang Qing-Hua, Liu Bao-An, Zhu Li-Li, Zhang Li-Song, Zhang Fang, Xu Xin-Guang, Wang Zheng-Ping, Sun Xun, Zhao Xian. Raman spectroscopic study on the micro-structure of NH4H2PO4 and ND4D2PO4 crystals. Acta Physica Sinica, 2015, 64(19): 197801. doi: 10.7498/aps.64.197801
    [7] Zhang Ji, Wang Di, Zhang De-Ming, Zhang Qing-Li, Wan Song-Ming, Sun Dun-Lu, Yin Shao-Tang. Vibrational spectra and first principles calculation of BaBPO5 crystal. Acta Physica Sinica, 2013, 62(3): 037802. doi: 10.7498/aps.62.037802
    [8] Qian Jian-Qiang, Wang Xi, Yao Jun-En, Hua Bao-Cheng. Mechanical model of tuning forks used in scanning probe microscopes. Acta Physica Sinica, 2011, 60(4): 040702. doi: 10.7498/aps.60.040702
    [9] Yan Wei, Ma Miao, Dai Ze-Lin, Gu Yu, Zhu Hong-Zhao, Liu Yu-Tong, Xu Xiang-Dong, Han Shou-Sheng, Peng Yong. Experimental and theoretical study on terahertz spectra of all-trans -carotene. Acta Physica Sinica, 2017, 66(3): 037801. doi: 10.7498/aps.66.037801
    [10] Zhang Ji, Zhang De-Ming, Wang Di, Zhang Qing-Li, Sun Dun-Lu, Yin Shao-Tang. Polarized Raman spectra of single crystal Bi2ZnOB2O6. Acta Physica Sinica, 2013, 62(23): 237802. doi: 10.7498/aps.62.237802
    [11] Peng Yong-Jin, Zhang Hui-Peng, Jin Qing-Hua, Wang Yu-Fang, Li Bao-Hui, Ding Da-Tong. The E1 and E2 vibrational modes at Γ point for chiral single wall carbon nanotubes. Acta Physica Sinica, 2006, 55(6): 2860-2864. doi: 10.7498/aps.55.2860
    [12] Luo Yi, Zhang Xian, Yu Xiao-Qiang, Jiang Min-Hua, Zhao Ke, Sun Yuan-Hong, Wang Chuan-Kui. Studies on two-photon absorption cross-sections of 1,4-dimethoxy-2,5-divinyl-benzene derivatives. Acta Physica Sinica, 2005, 54(6): 2662-2668. doi: 10.7498/aps.54.2662
    [13] Liu Yu-Zhu, Gerber Thomas, Knopp Gregor. Optical control of the vibrational excitation of the polyatomic ions via strong field multi-photon ionization. Acta Physica Sinica, 2014, 63(24): 244208. doi: 10.7498/aps.63.244208
    [14] Ying Xue-Nong, Zhang Liang, Wu Wen-Hui, Shen Yi-Fan, Zhou Heng-Wei, Zhang Jin-Lu, Huang Yi-Neng. Measurements of dimethyl phthalate series by the reed-vibration mechanical spectroscopy for liquids. Acta Physica Sinica, 2007, 56(11): 6547-6551. doi: 10.7498/aps.56.6547
    [15] Wu Yu-Yu, Zou Chong-Wen, Xu Peng-Shou. Hydeogen-related defect sites in ZnO studied via local vibrational modes. Acta Physica Sinica, 2006, 55(10): 5466-5470. doi: 10.7498/aps.55.5466
    [16] Gu Zhen-Yu, Ji Pei-Yong. . Acta Physica Sinica, 2002, 51(5): 1022-1025. doi: 10.7498/aps.51.1022
    [17] Sun Cheng-Lin, Li Zuo-Wei, Cao An-Yang, Li Zhan-Long, Jiang Yong-Heng. Enhanced stimulated Raman scattering of weak-gain mode C—H stretching vibration of benzene. Acta Physica Sinica, 2011, 60(6): 064211. doi: 10.7498/aps.60.064211
    [18] Ni Long, Chen Xiao. Mode separation for multimode Lamb waves based on dispersion compensation and fractional differential. Acta Physica Sinica, 2018, 67(20): 204301. doi: 10.7498/aps.67.20180561
    [19] Zhang Di-Yu, Li Qing-Yi, Guo Fu-Ming, Yang Yu-Jun. The influences of multiphoton excitation on near-threshold Harmonic emission in atoms. Acta Physica Sinica, 2016, 65(22): 223202. doi: 10.7498/aps.65.223202
    [20] Kong Chao, Xu Zheng, Zhao Su-Ling, Zhang Fu-Jun, Huang Jin-Ying, Yan Guang, Li Jun-Ming. Solid state cathodoluminescence of poly (2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene in devices with Si3N4 as the electronic accelerating layer. Acta Physica Sinica, 2008, 57(12): 7891-7895. doi: 10.7498/aps.57.7891
  • Citation:
Metrics
  • Abstract views:  620
  • PDF Downloads:  140
  • Cited By: 0
Publishing process
  • Received Date:  16 December 2016
  • Accepted Date:  22 January 2017
  • Published Online:  05 May 2017

One color resonance two-photon ionization spectra of p-methoxybenzonitrile

    Corresponding author: Li Chang-Yong, lichyong@sxu.edu.cn
  • 1. State Key Laboratory of Quantum Optics and Quantum Optic Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;
  • 2. College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
Fund Project:  Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the National Natural Science Foundation of China (Grant Nos. 61378039, 61575115, 11434007), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT13076), and the Construction of State Key Laboratory of Quantum Optics and Quantum Optics Devices, China (Grant No. 2015012001-20).

Abstract: p-methoxybenzonitrile is an important chemical and industrial material which has been widely used in many fields, such as medicine, chemistry, photoelectron, etc. In this paper, we use the technologies of supersonic molecular beam, resonance enhanced multiphoton ionization and time-of-flight mass spectrometer to obtain the high-resolution one color resonance two-photon ionization spectra of p-methoxybenzonitrile in a vibrational wavenumber range of 0-2400 cm-1. In order to analyze the experimental results, the theoretical calculations are performed. The molecular structure, energy, and vibration frequencies at the electronic excited state S1 are computed with time-dependent density functional theory at the level of B3PW91/6-311 g++**. According to the calculated results, the observed bands are assigned by the method of Varsanyi and Szoke. The band origin of the S1S0 electronic transition of p-methoxybenzonitrile is determined to be (355492) cm-1. A lot of vibrational bands of the electronic excited state S1 are observed. The results show that the vibrational modes of 9b, 6b, 15 and 1 are very easy to activate in a wavenumber range of 0-800 cm-1. There are also a lot of intense bands in a wavenumber range of 800-1600 cm-1. In addition to the fundamental vibrations, many combined vibrations between breathing and other fundamental vibrations are found. Several vibrations in this range are located at OCH3 and CN group. Most of the bands in a range of 1600-2400 cm-1 correspond to ones in the range of 800-1600 cm-1. Except for the bands appearing at 1664 and 2156 cm-1, which are assigned to 15011301 and (CN) (CN stretching) respectively, the remaining bands in the range of 1600-2400 cm-1 are assigned as the combined vibrations between the breathing and the corresponding modes in the range of 800-1600 cm-1, i.e., the combined vibrations between the breathing overtone and other fundamental modes. Our theoretical calculations show that except for CN stretching vibration at 2162 cm-1, there is no fundamental frequency in a range of 1600-3000 cm-1, which is consistent with our experimental result and assignment. The fundamental of the breathing vibration 11 and its second overtone vibration 12 are very strong. The third overtone frequency 13 can be identified unambiguously. This is an important characteristic of p-methoxybenzonitrile, which is different from that of the usual polyatomic molecule. These results provide important reference for future researches on Rydberg states, chemical kinetics and zero kinetic energy spectroscopy of p-methoxybenzonitrile.

Reference (21)

Catalog

    /

    返回文章
    返回