Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Chaos propeties of the time-dependent driven Dicke model

Liu Ni Liang Jiu-Qing

Chaos propeties of the time-dependent driven Dicke model

Liu Ni, Liang Jiu-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Now, many different approaches have been presented to study the different semi-classical models derived from the Dicke Hamiltonian, which reflect a fact that the quantum-mechanical spin possesses no direct classical analog. The Hartree-Fock-type approximation is one of the widely used approaches, with which we derive the Heisenberg equations of motion for the system and replace the operators in these equations with the corresponding expectation values. In the present paper, we investigate the role of quantum phase transition in determining the chaotic property of the time-dependent driven Dicke model. The semi-classical Hamiltonian is derived by evaluating the expectation value of the Dicke Hamiltonian in a state, which is a product state of photonic and atomic coherent states. Based on the inverse of the relations between the position-momentum representation and the Bosonic creation-annihilation operators, the Hamiltonian is rewritten in the position-momentum representation and it undergoes a spontaneous symmetry-breaking phase transition, which is directly analogous to the quantum phase transition of the quantum system. In order to depict the Poincaré sections, which are used to analyze the trajectories through the four-dimensional phase space, we give the equations of motion of system from the derivatives of the semi-classical Hamiltonian for a variety of different parameters and initial conditions. According to the Dicke quantum phase transition observed from the experimental setup , we study the effect of a monochromatic non-adiabatic modulation of the atom-field coupling in Dicke model (i.e., the driven Dicke model) on the system chaos by adjusting the pump laser intensity. The change from periodic track to chaotic figure reflects the quantum properties of the system, especially the quantum phase transition point, which is a key position for people to analyse the shift from periodic orbit to chaos. In an undriven case, the system reduces to the standard Dicke model. We discover from the Poincaré sections that the system undergoes a change from the classical periodic orbit to a number of chaotic trajectories and in the superradiant phase area, the whole phase space is completely chaotic. When the static and driving coupling both exist, the system shows rich chaotic motion. The ground state properties are mainly determined by the static coupling, while the orbit of the system is adjusted by the driving coupling. If the static coupling is greater than the critical coupling, the system displays completely chaotic images in the Poincaré sections, and the periodic orbits in the chaos can also be adjusted by the strong driving coupling. While the static coupling is less than the critical coupling, the system can also show the chaotic images by adjusting the driving coupling strength and oscillation frequency. Moreover, by tuning the oscillation frequency, the Poincaré sections may change from the classical orbits to the chaos, and back to the classical orbits in the normal phase of the system.
      Corresponding author: Liu Ni, 317446484@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404198, 11275118, 91430109), the Scientific and Technological Innovation Program of Higher Education Institutions in Shanxi Province (STIP), China (Grant No. 2014102), the Launch of the Scientific Research of Shanxi University, China (Grant No. 011151801004), and the National Fundamental Training, China (Grant No. J1103210).
    [1]

    Hepp K, Lieb E H 1973 Ann. Phys. 76 360

    [2]

    Hioes F T 1973 Phys. Rev. A 8 1440

    [3]

    Liu N, Lian J L, Ma J, Xiao L T, Chen G, Liang J Q, Jia S T 2011 Phys. Rev. A 83 033601

    [4]

    Graham R, Höhnerbach M 1984 Phys. Lett. A 101 61

    [5]

    Furuya K, Nemes M C, Pellegrino G Q 1998 Phys. Rev. Lett. 80 5524

    [6]

    Song L J, Yan D, Gai Y J, Wang Y B 2011 Acta Phys. Sin. 60 020302 (in Chinese) [宋立军, 严冬, 盖永杰, 王玉波 2011 物理学报 60 020302]

    [7]

    Song L J, Yan D, Gai Y J, Wang Y B 2010 Acta Phys. Sin. 59 3695 (in Chinese) [宋立军, 严冬, 盖永杰, 王玉波 2010 物理学报 59 3695]

    [8]

    Zhao W L, Wang J Z, Dou F Q 2012 Acta Phys. Sin. 61 240302 (in Chinese) [赵文垒, 王建忠, 豆福全 2012 物理学报 61 240302]

    [9]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203

    [10]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301

    [11]

    Yu L X, Fan J T, Zhu S Q, Chen G, Jia S T, Nori F 2014 Phys. Rev. A 89 023838

    [12]

    Fan J T, Yang Z W, Zhang Y W, Ma J, Chen G, Jia S T 2014 Phys. Rev. A 89 023812

    [13]

    Zhao X Q, Liu N, Liang J Q 2014 Phys. Rev. A 90 023622

    [14]

    Bastidas V M, Emary C, Regler B, Brandes T 2012 Phys. Rev. Lett. 108 043003

    [15]

    Liu N, Li J D, Liang J Q 2013 Phys. Rev. A 87 053623

    [16]

    Holstein T, Primakoff H 1949 Phys. Rev. A 58 1098

    [17]

    Hillery M, Mlodinow L D 1984 Phys. Rev. A 31 797

  • [1]

    Hepp K, Lieb E H 1973 Ann. Phys. 76 360

    [2]

    Hioes F T 1973 Phys. Rev. A 8 1440

    [3]

    Liu N, Lian J L, Ma J, Xiao L T, Chen G, Liang J Q, Jia S T 2011 Phys. Rev. A 83 033601

    [4]

    Graham R, Höhnerbach M 1984 Phys. Lett. A 101 61

    [5]

    Furuya K, Nemes M C, Pellegrino G Q 1998 Phys. Rev. Lett. 80 5524

    [6]

    Song L J, Yan D, Gai Y J, Wang Y B 2011 Acta Phys. Sin. 60 020302 (in Chinese) [宋立军, 严冬, 盖永杰, 王玉波 2011 物理学报 60 020302]

    [7]

    Song L J, Yan D, Gai Y J, Wang Y B 2010 Acta Phys. Sin. 59 3695 (in Chinese) [宋立军, 严冬, 盖永杰, 王玉波 2010 物理学报 59 3695]

    [8]

    Zhao W L, Wang J Z, Dou F Q 2012 Acta Phys. Sin. 61 240302 (in Chinese) [赵文垒, 王建忠, 豆福全 2012 物理学报 61 240302]

    [9]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203

    [10]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301

    [11]

    Yu L X, Fan J T, Zhu S Q, Chen G, Jia S T, Nori F 2014 Phys. Rev. A 89 023838

    [12]

    Fan J T, Yang Z W, Zhang Y W, Ma J, Chen G, Jia S T 2014 Phys. Rev. A 89 023812

    [13]

    Zhao X Q, Liu N, Liang J Q 2014 Phys. Rev. A 90 023622

    [14]

    Bastidas V M, Emary C, Regler B, Brandes T 2012 Phys. Rev. Lett. 108 043003

    [15]

    Liu N, Li J D, Liang J Q 2013 Phys. Rev. A 87 053623

    [16]

    Holstein T, Primakoff H 1949 Phys. Rev. A 58 1098

    [17]

    Hillery M, Mlodinow L D 1984 Phys. Rev. A 31 797

  • [1] Song Li-Jun, Yan Dong, Gai Yong-Jie, Wang Yu-Bo. Quantum chaos and the dynamic properties of single-particle coherence in Dicke model. Acta Physica Sinica, 2010, 59(6): 3695-3699. doi: 10.7498/aps.59.3695
    [2] Wang Yu-Bo, Song Li-Jun, Yan Dong, Gai Yong-Jie. Relations of classical-quantum correspondencein Dicke model. Acta Physica Sinica, 2011, 60(2): 020302. doi: 10.7498/aps.60.020302
    [3] Ye Bin, Gu Rui-Jun, Xu Wen-Bo. Robust quantum computation of the kicked Harper model and quantum chaos. Acta Physica Sinica, 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
    [4] Tan Chang-Ling, Tan Zhen-Bing, Ma Li, Chen Jun, Yang Fan, Qu Fan-Ming, Liu Guang-Tong, Yang Hai-Fang, Yang Chang-Li, Lü Li. Quantum chaos in graphene nanoribbon quantum dot. Acta Physica Sinica, 2009, 58(8): 5726-5729. doi: 10.7498/aps.58.5726
    [5] Song Li-Jun, Yan Dong, Liu Yie. Quantum Fisher information and chaos in the system of Bose-Einstein condensate. Acta Physica Sinica, 2011, 60(12): 120302. doi: 10.7498/aps.60.120302
    [6] Zhao Wen-Lei, Wang Jian-Zhong, Dou Fu-Quan. Decoherence by a classically small influence. Acta Physica Sinica, 2012, 61(24): 240302. doi: 10.7498/aps.61.240302
    [7] Chang Feng, Wang Xiao-Qian, Gai Yong-Jie, Yan Dong, Song Li-Jun. Quantum Fisher information and spin squeezing in the interaction system of light and matter. Acta Physica Sinica, 2014, 63(17): 170302. doi: 10.7498/aps.63.170302
    [8] Jia Shu-Fang, Liang Jiu-Qing. Finite-temperature properties of N two-level atoms in a single-mode optic cavity and phase transition. Acta Physica Sinica, 2015, 64(13): 130505. doi: 10.7498/aps.64.130505
    [9] Qu Chun-Lei, Zhao Qing. Quantum-resonance ratchet in a kicked Bose-Einstein condensate. Acta Physica Sinica, 2009, 58(7): 4390-4395. doi: 10.7498/aps.58.4390
    [10] Yu Li-Xian, Liang Qi-Feng, Wang Li-Rong, Zhu Shi-Qun. Firstorder quantum phase transition in the two-mode Dicke model. Acta Physica Sinica, 2014, 63(13): 134204. doi: 10.7498/aps.63.134204
    [11] Zhang Shi, Wang Pan, Zhang Rui-Hao, Chen Hong. A new method for selecting arbitrary Poincare section. Acta Physica Sinica, 2020, 69(4): 040503. doi: 10.7498/aps.69.20191585
    [12] Mao Li-Jun, Zhang Yun-Bo. The dynamics of the bipartite and tripartite entanglement in the three-qubit Dicke model. Acta Physica Sinica, 2021, 70(4): 040301. doi: 10.7498/aps.70.20201602
    [13] Chen Hong, Wu Ling. Design and implementation of an arbitrary poincare plane section circuit in three-dimensional space. Acta Physica Sinica, 2013, 62(2): 020507. doi: 10.7498/aps.62.020507
    [14] Li Xiao-Ke, Feng Wei. Quantum trajectory simulation for nonadiabatic molecular dynamics. Acta Physica Sinica, 2017, 66(15): 153101. doi: 10.7498/aps.66.153101
    [15] Yang Mei-Rong, Hai Wen-Hua, Lu Geng-Biao, Zhong Hong-Hua. Exact quantum motion of a single trapped ion interacting with standing laser pulses in Lamb-Dicke regime. Acta Physica Sinica, 2010, 59(4): 2406-2415. doi: 10.7498/aps.59.2406
    [16] ZHANG JI-YUE, XU MING. CHAOS IN A TWO-PHOTON QUANTUM OPTICAL MODEL. Acta Physica Sinica, 1993, 42(8): 1205-1209. doi: 10.7498/aps.42.1205
    [17] Hu Jing-Yu, Mao Teng-Fei, Dou Fu-Quan, Zhao Qing. Application of the composite adiabatic passage technique in the Landau-Zener model with harmonic interaction modulation. Acta Physica Sinica, 2013, 62(17): 170303. doi: 10.7498/aps.62.170303
    [18] Zhang Miao, Jia Huan-Yu. Generations of coherent states of single trapped cold ion beyond the Lamb-Dicke limit. Acta Physica Sinica, 2008, 57(2): 880-886. doi: 10.7498/aps.57.880
    [19] XIAO XING-GUO, LIU LIAO. WORMHOLE SOLUTION IN VACUUM REAL BRANS-DICKE THEORY. Acta Physica Sinica, 1994, 43(11): 1907-1912. doi: 10.7498/aps.43.1907
    [20] Wang Bo-Bo, Liu Liao. . Acta Physica Sinica, 2002, 51(7): 1654-1660. doi: 10.7498/aps.51.1654
  • Citation:
Metrics
  • Abstract views:  905
  • PDF Downloads:  176
  • Cited By: 0
Publishing process
  • Received Date:  21 January 2017
  • Accepted Date:  28 March 2017
  • Published Online:  05 June 2017

Chaos propeties of the time-dependent driven Dicke model

    Corresponding author: Liu Ni, 317446484@qq.com
  • 1. Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 11404198, 11275118, 91430109), the Scientific and Technological Innovation Program of Higher Education Institutions in Shanxi Province (STIP), China (Grant No. 2014102), the Launch of the Scientific Research of Shanxi University, China (Grant No. 011151801004), and the National Fundamental Training, China (Grant No. J1103210).

Abstract: Now, many different approaches have been presented to study the different semi-classical models derived from the Dicke Hamiltonian, which reflect a fact that the quantum-mechanical spin possesses no direct classical analog. The Hartree-Fock-type approximation is one of the widely used approaches, with which we derive the Heisenberg equations of motion for the system and replace the operators in these equations with the corresponding expectation values. In the present paper, we investigate the role of quantum phase transition in determining the chaotic property of the time-dependent driven Dicke model. The semi-classical Hamiltonian is derived by evaluating the expectation value of the Dicke Hamiltonian in a state, which is a product state of photonic and atomic coherent states. Based on the inverse of the relations between the position-momentum representation and the Bosonic creation-annihilation operators, the Hamiltonian is rewritten in the position-momentum representation and it undergoes a spontaneous symmetry-breaking phase transition, which is directly analogous to the quantum phase transition of the quantum system. In order to depict the Poincaré sections, which are used to analyze the trajectories through the four-dimensional phase space, we give the equations of motion of system from the derivatives of the semi-classical Hamiltonian for a variety of different parameters and initial conditions. According to the Dicke quantum phase transition observed from the experimental setup , we study the effect of a monochromatic non-adiabatic modulation of the atom-field coupling in Dicke model (i.e., the driven Dicke model) on the system chaos by adjusting the pump laser intensity. The change from periodic track to chaotic figure reflects the quantum properties of the system, especially the quantum phase transition point, which is a key position for people to analyse the shift from periodic orbit to chaos. In an undriven case, the system reduces to the standard Dicke model. We discover from the Poincaré sections that the system undergoes a change from the classical periodic orbit to a number of chaotic trajectories and in the superradiant phase area, the whole phase space is completely chaotic. When the static and driving coupling both exist, the system shows rich chaotic motion. The ground state properties are mainly determined by the static coupling, while the orbit of the system is adjusted by the driving coupling. If the static coupling is greater than the critical coupling, the system displays completely chaotic images in the Poincaré sections, and the periodic orbits in the chaos can also be adjusted by the strong driving coupling. While the static coupling is less than the critical coupling, the system can also show the chaotic images by adjusting the driving coupling strength and oscillation frequency. Moreover, by tuning the oscillation frequency, the Poincaré sections may change from the classical orbits to the chaos, and back to the classical orbits in the normal phase of the system.

Reference (17)

Catalog

    /

    返回文章
    返回