搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光与物质相互作用系统中的量子Fisher信息和自旋压缩

常锋 王晓茜 盖永杰 严冬 宋立军

光与物质相互作用系统中的量子Fisher信息和自旋压缩

常锋, 王晓茜, 盖永杰, 严冬, 宋立军
PDF
导出引用
导出核心图
  • Fisher信息是估计理论中的重要概念,最近发现与量子信息中的纠缠判据具有密切联系. 非旋波近似条件下,Dicke模型经典相空间表现为混沌动力学特征.本文详细考察了Dicke 模型描述的光与物质相互作用系统中量子Fisher信息和自旋压缩动力学特性. 结果表明:在短时瞬态情况下,无论初态处于规则区域还是混沌区域系统均表现为纠缠性质;但在长时稳态情况下,初态处于规则区域时系统纠缠消失,而初态处于混沌区域时系统则一直存在纠缠. 通过与系统自旋压缩动力学性质相比较,发现量子Fisher信息可以更有效地刻画量子混沌. 进一步考察初态处于规则和混沌区域时系统密度矩阵和纯度的动力学演化特性,发现混沌导致系统退相干现象发生,说明量子Fisher信息对混沌更敏感.
    • 基金项目: 国家自然科学基金(批准号:11347013,11305020)、吉林省科技发展计划项目(批准号:20130521016JH,20140101187JC)和吉林省教育厅科技发展计划项目(批准号:2012245,2013262)资助的课题.
    [1]

    Haake F 1991 Quantum Signature of Chaos (Berlin: Springer-Verlag press)

    [2]

    Heller E J 1984 Phys. Rev. Lett. 53 1515

    [3]
    [4]
    [5]

    Schack R, D'Ariano G M, Caves C M 1994 Phys. Rev. E 50 972

    [6]
    [7]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203

    [8]

    Peres A 1984 Phys. Rev. A 30 1610

    [9]
    [10]

    Emerson J, Weinstein Y S, Lloyd S, Cory D G 2002 Phys. Rev. Lett. 89 284102

    [11]
    [12]

    Weinstein Y S, Hellberg C S 2005 Phys. Rev. E 71 016209 Weinstein Y S, Hellberg C S 2005 Phys. Rev. E 71 035203 Weinstein Y S, Viola L 2006 Europhys. Lett. 76 746

    [13]
    [14]
    [15]

    Furuya K, Nemes M C, Pellegrino G Q 1998 Phys. Rev. Lett. 80 5524

    [16]
    [17]

    Miller P A, Sarkar S 1999 Phys. Rev. E 60 1542

    [18]

    Fujisaki H, Miyadera T, Tanaka A 2003 Phys. Rev. E 67 066201

    [19]
    [20]
    [21]

    Bettelli S, Shepelyansky D L 2003 Phys. Rev. E 67 054303

    [22]
    [23]

    Wang X G, Ghose S, Sanders B C, Hu B 2004 Phys. Rev. E 70 016217

    [24]

    Novaes M, de Aguiar M A M 2004 Phys. Rev. 70 045201 Novaes M 2005 Ann. Phys. 318 308

    [25]
    [26]
    [27]

    Song L J, Wang X G, Yan D, Zong Z G 2006 J. Phys. B: At. Mol. Opt. Phys. 39 559

    [28]

    Song L J, Yan D, Ma J, Wang X G 2009 Phys. Rev. E 79 046220

    [29]
    [30]

    Wang X Q, Ma J, Son g L J, Zhang X H, Wang X G 2010 Phys. Rev. E 82 056205

    [31]
    [32]

    Pezz L, Smerzi A 2009 Phys. Rev. Lett. 102 100401

    [33]
    [34]
    [35]

    Zhong W, Liu J, Ma J, Wang X G 2014 Chin. Phys. B 23 060302

    [36]
    [37]

    Wang X Q, Ma J, Zhang X H, Wang X G 2009 Chin. Phys. B 20 050510

    [38]

    Dicke R H 1954 Phys. Rev. 93 99

    [39]
    [40]

    Hou X W, Chen J H, Hu B 2005 Phys. Rev. A 71 034302

    [41]
    [42]
    [43]

    Fang Y C, Yang Z A, Yang L Y 2008 Acta Phys. Sin. 57 0661 (in Chinese)[房永翠, 杨志安, 杨丽云 2008 物理学报 57 0661]

    [44]

    Zhang W M, Feng D H, Gilmore R 1990 Rev. Mod. Phys. 62 867

    [45]
    [46]

    Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press)

    [47]
    [48]

    Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North-Holland Press)

    [49]
    [50]
    [51]

    Wineland D J, Bollinger J J, Itano W M, Heinzen D J 1994 Phys. Rev. A 50 67

    [52]

    Song L J, Ma J, Yan D, Wang X G 2012 Eur. Phys. J. D 66 201

    [53]
    [54]
    [55]

    Chaudhury S, Smith A, Anderson B E, Ghose S, Jessen P S 2009 Nature 461 768

  • [1]

    Haake F 1991 Quantum Signature of Chaos (Berlin: Springer-Verlag press)

    [2]

    Heller E J 1984 Phys. Rev. Lett. 53 1515

    [3]
    [4]
    [5]

    Schack R, D'Ariano G M, Caves C M 1994 Phys. Rev. E 50 972

    [6]
    [7]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203

    [8]

    Peres A 1984 Phys. Rev. A 30 1610

    [9]
    [10]

    Emerson J, Weinstein Y S, Lloyd S, Cory D G 2002 Phys. Rev. Lett. 89 284102

    [11]
    [12]

    Weinstein Y S, Hellberg C S 2005 Phys. Rev. E 71 016209 Weinstein Y S, Hellberg C S 2005 Phys. Rev. E 71 035203 Weinstein Y S, Viola L 2006 Europhys. Lett. 76 746

    [13]
    [14]
    [15]

    Furuya K, Nemes M C, Pellegrino G Q 1998 Phys. Rev. Lett. 80 5524

    [16]
    [17]

    Miller P A, Sarkar S 1999 Phys. Rev. E 60 1542

    [18]

    Fujisaki H, Miyadera T, Tanaka A 2003 Phys. Rev. E 67 066201

    [19]
    [20]
    [21]

    Bettelli S, Shepelyansky D L 2003 Phys. Rev. E 67 054303

    [22]
    [23]

    Wang X G, Ghose S, Sanders B C, Hu B 2004 Phys. Rev. E 70 016217

    [24]

    Novaes M, de Aguiar M A M 2004 Phys. Rev. 70 045201 Novaes M 2005 Ann. Phys. 318 308

    [25]
    [26]
    [27]

    Song L J, Wang X G, Yan D, Zong Z G 2006 J. Phys. B: At. Mol. Opt. Phys. 39 559

    [28]

    Song L J, Yan D, Ma J, Wang X G 2009 Phys. Rev. E 79 046220

    [29]
    [30]

    Wang X Q, Ma J, Son g L J, Zhang X H, Wang X G 2010 Phys. Rev. E 82 056205

    [31]
    [32]

    Pezz L, Smerzi A 2009 Phys. Rev. Lett. 102 100401

    [33]
    [34]
    [35]

    Zhong W, Liu J, Ma J, Wang X G 2014 Chin. Phys. B 23 060302

    [36]
    [37]

    Wang X Q, Ma J, Zhang X H, Wang X G 2009 Chin. Phys. B 20 050510

    [38]

    Dicke R H 1954 Phys. Rev. 93 99

    [39]
    [40]

    Hou X W, Chen J H, Hu B 2005 Phys. Rev. A 71 034302

    [41]
    [42]
    [43]

    Fang Y C, Yang Z A, Yang L Y 2008 Acta Phys. Sin. 57 0661 (in Chinese)[房永翠, 杨志安, 杨丽云 2008 物理学报 57 0661]

    [44]

    Zhang W M, Feng D H, Gilmore R 1990 Rev. Mod. Phys. 62 867

    [45]
    [46]

    Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press)

    [47]
    [48]

    Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North-Holland Press)

    [49]
    [50]
    [51]

    Wineland D J, Bollinger J J, Itano W M, Heinzen D J 1994 Phys. Rev. A 50 67

    [52]

    Song L J, Ma J, Yan D, Wang X G 2012 Eur. Phys. J. D 66 201

    [53]
    [54]
    [55]

    Chaudhury S, Smith A, Anderson B E, Ghose S, Jessen P S 2009 Nature 461 768

  • [1] 赵文垒, 王建忠, 豆福全. 混沌微扰导致的量子退相干. 物理学报, 2012, 61(24): 240302. doi: 10.7498/aps.61.240302
    [2] 宋立军, 严冬, 刘烨. 玻色-爱因斯坦凝聚系统的量子Fisher信息与混沌. 物理学报, 2011, 60(12): 120302. doi: 10.7498/aps.60.120302
    [3] 闫婕, 魏苗苗, 邢燕霞. HgTe/CdTe量子阱中自旋拓扑态的退相干效应. 物理学报, 2019, 68(22): 227301. doi: 10.7498/aps.68.20191072
    [4] 白旭芳(Bai Xu-Fang), 陈磊, 额尔敦朝鲁. 电磁场中施主中心量子点内磁极化子态寿命与qubit退相干. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200242
    [5] 任志红, 李岩, 李艳娜, 李卫东. 基于量子Fisher信息的量子计量进展. 物理学报, 2019, 68(4): 040601. doi: 10.7498/aps.68.20181965
    [6] 宋立军, 严冬, 盖永杰, 王玉波. Dicke模型的量子混沌和单粒子相干动力学特性. 物理学报, 2010, 59(6): 3695-3699. doi: 10.7498/aps.59.3695
    [7] 武莹, 李锦芳, 刘金明. 基于部分测量增强量子隐形传态过程的量子Fisher信息. 物理学报, 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [8] 谭长玲, 谭振兵, 马丽, 陈军, 杨帆, 屈凡明, 刘广同, 杨海方, 杨昌黎, 吕力. 石墨烯纳米带量子点中的量子混沌现象. 物理学报, 2009, 58(8): 5726-5729. doi: 10.7498/aps.58.5726
    [9] 叶 宾, 谷瑞军, 须文波. 周期驱动的Harper模型的量子计算鲁棒性与量子混沌. 物理学报, 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
    [10] 郭红. Bose-Hubbard模型中系统初态对量子关联的影响. 物理学报, 2015, 64(22): 220301. doi: 10.7498/aps.64.220301
    [11] 赵军龙, 张译丹, 杨名. 噪声对一种三粒子量子探针态的影响. 物理学报, 2018, 67(14): 140302. doi: 10.7498/aps.67.20180040
    [12] 宋立军, 严冬, 盖永杰, 王玉波. Dicke模型的量子经典对应关系. 物理学报, 2011, 60(2): 020302. doi: 10.7498/aps.60.020302
    [13] 刘绍鼎, 程木田, 周慧君, 王取泉, 李耀义, 薛其坤. 双激子和浸润层泄漏以及俄歇俘获对量子点Rabi振荡衰减的影响. 物理学报, 2006, 55(5): 2122-2127. doi: 10.7498/aps.55.2122
    [14] 赵虎, 李铁夫, 刘建设, 陈炜. 基于超导量子比特的电磁感应透明研究进展. 物理学报, 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [15] 黄馨瑶, 项玉, 孙风潇, 何琼毅, 龚旗煌. 平面自旋压缩态的产生与原子干涉的机理. 物理学报, 2015, 64(16): 160304. doi: 10.7498/aps.64.160304
    [16] 严冬, 宋立军, 陈殿伟. 两分量玻色-爱因斯坦凝聚系统的自旋压缩. 物理学报, 2009, 58(6): 3679-3684. doi: 10.7498/aps.58.3679
    [17] 张浩亮, 贾芳, 徐学翔, 郭琴, 陶向阳, 胡利云. 光子增减叠加相干态在热环境中的退相干. 物理学报, 2013, 62(1): 014208. doi: 10.7498/aps.62.014208
    [18] 党文佳, 曾晓东, 冯喆珺. 目标粗糙对合成孔径激光雷达回波的退相干效应. 物理学报, 2013, 62(2): 024204. doi: 10.7498/aps.62.024204
    [19] 刘妮, 梁九卿. 含时驱动的Dicke模型的混沌特性. 物理学报, 2017, 66(11): 110502. doi: 10.7498/aps.66.110502
    [20] 曲春雷, 赵清. 周期驱动玻色-爱因斯坦凝聚系统的棘齿效应. 物理学报, 2009, 58(7): 4390-4395. doi: 10.7498/aps.58.4390
  • 引用本文:
    Citation:
计量
  • 文章访问数:  693
  • PDF下载量:  546
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-08
  • 修回日期:  2014-05-02
  • 刊出日期:  2014-09-05

光与物质相互作用系统中的量子Fisher信息和自旋压缩

  • 1. 长春理工大学理学院, 长春 130022;
  • 2. 长春大学理学院, 长春 130022
    基金项目: 

    国家自然科学基金(批准号:11347013,11305020)、吉林省科技发展计划项目(批准号:20130521016JH,20140101187JC)和吉林省教育厅科技发展计划项目(批准号:2012245,2013262)资助的课题.

摘要: Fisher信息是估计理论中的重要概念,最近发现与量子信息中的纠缠判据具有密切联系. 非旋波近似条件下,Dicke模型经典相空间表现为混沌动力学特征.本文详细考察了Dicke 模型描述的光与物质相互作用系统中量子Fisher信息和自旋压缩动力学特性. 结果表明:在短时瞬态情况下,无论初态处于规则区域还是混沌区域系统均表现为纠缠性质;但在长时稳态情况下,初态处于规则区域时系统纠缠消失,而初态处于混沌区域时系统则一直存在纠缠. 通过与系统自旋压缩动力学性质相比较,发现量子Fisher信息可以更有效地刻画量子混沌. 进一步考察初态处于规则和混沌区域时系统密度矩阵和纯度的动力学演化特性,发现混沌导致系统退相干现象发生,说明量子Fisher信息对混沌更敏感.

English Abstract

参考文献 (55)

目录

    /

    返回文章
    返回