Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent progress of the application of surface plasmon polariton in quantum information processing

Li Ming Chen Yang Guo Guang-Can Ren Xi-Feng

Recent progress of the application of surface plasmon polariton in quantum information processing

Li Ming, Chen Yang, Guo Guang-Can, Ren Xi-Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Surface plasmon polariton has attracted more and more attention and has been studied extensively in the recent decades, owing to its ability to confine the electro-magnetic field to a sub-wavelength scale near the metal-dielectric interface. On one hand, the tightly confined surface plasmonic modes can reduce the size of integrated optical device beyond the diffraction limit; on the other hand, it provides an approach to enhancing the interaction between light and matter. With the development of experimental and numerical simulation techniques, its investigation at a quantum level has become possible. In the recent experiments, scientists have realized quantum interference between single plasmons in a nanoscale waveguide circuit and achieved the strong coupling between photons and single molecules by using plasmonic structure, which demonstrates its superiority over the traditional optics. Here, we review the theoretical and experimental researches of surface plasmon polariton in the field of quantum information processing. First, we introduce the experiments on the basic quantum properties of surface plasmons, including the preservation of photonic entanglement, wave-particle duality and quantum statistical property. Second, we review the research work relating to the generation, manipulation and detection of surface plasmons in a quantum plasmonic integrated circuit. Then, we present the research of the interaction between surface plasmons and single quantum emitters and its potential applications. Finally, we make a discussion on how the intrinsic loss affects the quantum interference of single plasmons and the coupling between quantum emitters. The collision and combination of quantum optical and plasmonic fields open up possibilities for investigating the fundamental quantum physical properties of surface plasmons. It can be used to make ultra-compact quantum photonic integrated circuits and enhance the interaction strength between photons and quantum emitters.
      Corresponding author: Ren Xi-Feng, renxf@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374289, 61590932), the National Key Rresearch and Development Program, China (Grant No. 2016YFA0301700), the Fundamental Research Funds for the Central Universities, China and the Open Fund of the State Key Laboratory on Integrated Optoelectronics (Grant No. IOSKL2015KF12).
    [1]

    Raether H 1988 Surface Plasmons on Smooth Surfaces (Berlin, Heidelberg: Springer)

    [2]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [3]

    Gramotnev D K, Bozhevolnyi 2010 Nature Photon. 4 83

    [4]

    Takahara J, Yamagisha S, Taki H, Morimoto A, Kobayashi T 1997 Opt. Lett. 22 475

    [5]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [6]

    Takahara J 2009 In Plasmonic Nanoguides and Circuits (Ch. 2) (Pan Stanford Publishing)

    [7]

    Wang L L 2012 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [王鲁橹 2012 博士学位论文 (合肥: 中国科学技术大学)]

    [8]

    Sadeghi S M, West R G 2011 Nejat A Nanotechnology 22 405202

    [9]

    Nie S, Emory S R 1997 Science 275 1102

    [10]

    Fleischmannand M, Hendra P J, Mc Quillan A 1974 J Chem. Phys. Lett. 26 163

    [11]

    Jeanmaire D L, van Duyne R P 1977 J. Electroanalyt. Chem. Interfac. Electrochem. 84 1

    [12]

    Berini P, de Leon J 2012 Nature Photon. 6 16

    [13]

    Bergman D J, Stockman M I 2003 Phys. Rev. Lett. 90 027402

    [14]

    Giannini V, Fernndez-Dominguez A I, Heck S C, Maier S A 2011 Chem. Rev. 111 3888

    [15]

    Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, van Duyne R P 2008 Nat. Mater. 7 442

    [16]

    Pines D A 1953 Phys. Rev. 92 626

    [17]

    Hopfield J J 1958 Phys. Rev. 112 1555

    [18]

    Elson J M, Ritchie R H 1971 Phys. Rev. B 4 4129

    [19]

    Waks E, Sridharan D 2010 Phys. Rev. A 82 043845

    [20]

    Tame M S, Lee C, Lee J, Ballester D, Paternostro M, Zayats A V, Kim M S 2008 Phys. Rev. Lett. 101 190504

    [21]

    Altewischer E, van Exter M P, Woerdman J P 2002 Nature 418 304

    [22]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [23]

    Fasel S, Robin F, Moreno E, Erni D, Gisin N, Zbinden H 2005 Phys. Rev. Lett. 94 110501

    [24]

    Ren X F, Guo G P, Huang Y F, Li C F, Guo G C 2006 Europhys. Lett. 76 753

    [25]

    Guo G P, Ren X F, Huang Y F, Li C F, Ou Z Y, Guo G C 2007 Phys. Lett. A 361 218

    [26]

    Huck A, Smolka S, Lodahl P, Srensen A S, Boltasseva A, Janousek J, Andersen U L 2009 Phys. Rev. Lett. 102 246802

    [27]

    Ren X F, Guo G P, Huang Y F, Wang Z W, Zhang P, Guo G C 2008 Europhys. Lett. 84 30005

    [28]

    Tang J S, Li Y L, Xu X Y, Xiang G Y, Li C F, Guo G C 2012 Nat. Photon. 6 600

    [29]

    Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Lukin M D 2007 Nature 450 402

    [30]

    Kolesov R, Grotz B, Balasubramanian G, Sthr R J, Nicolet A A L, Hemmer P R, Jelezko F, Wrachtrup J 2009 Nat. Phys. 5 470

    [31]

    Piazza L U C A, Lummen T T A, Quinonez E, Murooka Y, Reed B W, Barwick B, Carbone F 2015 Nat. Commun. 6 6407

    [32]

    Di Martino G, Sonnefraud Y, Kna-Cohen S, Tame M, Ozdemir S K, Kim M S, Maier S A 2012 Nano Lett. 12 2504

    [33]

    Falk A L, Koppens F H, Yu C L, Kang K, de Leon Snapp N, Akimov A V, Park H 2009 Nat. Phys. 5 475

    [34]

    Zou C L, Sun F W, Dong C H, Ren X F, Chen X D, Cui J M, Han Z F, Guo G C 2011 Opt. Lett. 36 3630

    [35]

    Dong C H, Zou C L, Ren X F, Guo G C, Sun F W 2012 Appl. Phys. Lett. 100 041104

    [36]

    Xiong X, Zou C L, Ren X F, Guo G C 2014 IEEE Photon. Tech. Lett. 26 1726

    [37]

    Wei H, Wang Z, Tian X, Kall M, Xu H 2011 Nat. Commun. 2 387

    [38]

    Holtfrerich M W, Dowran M, Davidson R, Lawrie B J, Pooser R C, Marino A M 2016 Optica 3 985

    [39]

    De Leon N P, Lukin M D, Park H 2012 IEEE J. Select. Topics in Quantum Electron. 18 1781

    [40]

    Otto A 1968 Zeitschrift fr Physik 216 398

    [41]

    Kano H, Mizuguchi S, Kawata S 1998 JOSAB 15 1381

    [42]

    Guo X, Ma Y G, Wang Y P, Tong L M 2013 Laser Photon. Rev. 7 855

    [43]

    Dong C H, Ren X F, Yang R, Duan J Y, Guan J G, Guo G C, Guo G P 2009 Appl. Phys. Lett. 95 221109

    [44]

    Guo X, Qiu M, Bao J, Wiley B J, Yang Q, Zhang X, Tong L 2009 Nano Lett. 9 4515

    [45]

    Kauranen M, Zayats A V 2012 Nat. Photon. 6 737

    [46]

    Grosse N B, Heckmann J, Woggon U 2012 Phys. Rev. Lett. 108 136802

    [47]

    Politi A, Cryan M J, Rarity J G, Yu S, O'brien J L 2008 Science 320 646

    [48]

    Fujii G, Segawa T, Mori S, Namekata N, Fukuda D, Inoue S 2012 Opt. Lett. 37 1535

    [49]

    Heeres R W, Kouwenhoven L P, Zwiller V 2013 Nat. Nanotech. 8 719

    [50]

    Fakonas J S, Lee H, Kelaita Y A, Atwater H A 2014 Nat. Photon. 8 317

    [51]

    Cai Y J, Li M, Ren X F, Zou C L, Xiong X, Lei H L, Liu B H, Guo G P, Guo G C 2014 Phys. Rev. Appl. 2 014004

    [52]

    Di Martino G, Sonnefraud Y, Tame M S, Kna-Cohen S, Dieleman F, zdemir Ş K, Maier S A 2014 Phys. Rev. Appl. 1 034004

    [53]

    Vest B, Dheur M, Devaux E, Ebbesen T W, Baron A, Rousseau E, Hugonin J P, Greffet J, Messin G, Marquier F 2016 arXiv:161007479 [quant-ph]

    [54]

    Wang S M, Cheng Q Q, Gong, Xu P, Sun C, Li L, Li T, Zhu S N 2016 Nat. Commun. 7 11490

    [55]

    Li M, Zou C L, Ren X F, Xiong X, Cai Y J, Guo G P, Tong L M, Guo G C 2015 Nano Lett. 15 2380

    [56]

    Fan W, Lawrie B J, Pooser R C 2015 Phys. Rev. A 92 053812

    [57]

    Lee C, Dieleman F, Lee J, Rockstuhl C, Maier S A, Tame M 2016 ACS Photon. 3 992

    [58]

    Heeres R W, Dorenbos S N, Koene B, Solomon G S, Kouwenhoven L P, Zwiller V 2009 Nano Lett. 10 661

    [59]

    Hood C J, Chapman M S, Lynn T W, Kimble H J 1998 Phys. Rev. Lett. 80 4157

    [60]

    Chang D E, Srensen A S, Hemmer P R, Lukin M D 2006 Phys. Rev. Lett. 97 053002

    [61]

    Drexhage K H, Kuhn H, Schfer F P 1968 Phys. Chem. 72 329

    [62]

    Purcell E M 1946 Phys. Rev. 69 674

    [63]

    Li M, Xiong X, Yu L, Zou C L, Chen Y, Liu D, Guo G C 2017 ar Xiv:170102935

    [64]

    Chang D E, Srensen A S, Hemmer P R, Lukin M D 2007 Phys. Rev. B 76 035420

    [65]

    Chang D E, Srensen A S, Demler E A, Lukin M D 2007 Nat. Phys. 3 807

    [66]

    Trgler A, Hohenester U 2008 Phys. Rev. B 77 115403

    [67]

    Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R, van Hulst N F 2010 Science 329 930

    [68]

    Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Mllen K, Moerner W E 2009 Nature Photon. 3 654

    [69]

    Koenderink A F 2010 Opt. Lett. 35 4208

    [70]

    Rice P R, Brecha R J 1995 Opt. Commun. 126 230

    [71]

    Ridolfo A, Di Stefano O, Fina N, Saija R, Savasta S 2010 Phys. Rev. Lett. 105 263601

    [72]

    Yannopapas V, Paspalakis E, Vitanov N V 2009 Phys. Rev. Lett. 103 063602

    [73]

    Li Q, Wei H, Xu H X 2014 Nano Lett. 14 3358

    [74]

    Zhang S, Wei H, Bao L, Hakanson U, Halas N J, Nordlander P, Xu H X 2011 Phys. Rev. Lett. 107 096801

    [75]

    Li Q, Wei H, Xu H X 2015 Nano Lett. 15 8181

    [76]

    Anger P, Bharadwaj P, Novotny L 2006 Phys. Rev. Lett. 96 113002

    [77]

    Passmore B S, Adams D C, Ribaudo T, Wasserman D, Lyon S, Davids P, Shaner E A 2011 Nano Lett. 11 338

    [78]

    Vasa P, Wang W, Pomraenke R, Lammers M, Maiuri M, Manzoni C, Lienau C 2013 Nature Photon. 7 128

    [79]

    Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Baumberg J J 2016 Nature 535 127

    [80]

    Martin-Cano D, Gonzlez-Tudela A, Martn-Moreno L, Garcia-Vidal F J, Tejedor C, Moreno E 2011 Phys. Rev. B 84 235306

    [81]

    Lin Z R, Guo G P, Tu T, Li H O, Zou C L, Chen J X, Guo G C 2010 Phys. Rev. B 82 241401

    [82]

    Constant T J, Hornett S M, Chang D E, Hendry E 2016 Nat. Phys. 12 124

    [83]

    Gullans M, Tiecke T G, Chang D E, Feist J, Thompson J D, Cirac J I, Lukin M D 2012 Phys. Rev. Lett. 109 235309

  • [1]

    Raether H 1988 Surface Plasmons on Smooth Surfaces (Berlin, Heidelberg: Springer)

    [2]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [3]

    Gramotnev D K, Bozhevolnyi 2010 Nature Photon. 4 83

    [4]

    Takahara J, Yamagisha S, Taki H, Morimoto A, Kobayashi T 1997 Opt. Lett. 22 475

    [5]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [6]

    Takahara J 2009 In Plasmonic Nanoguides and Circuits (Ch. 2) (Pan Stanford Publishing)

    [7]

    Wang L L 2012 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [王鲁橹 2012 博士学位论文 (合肥: 中国科学技术大学)]

    [8]

    Sadeghi S M, West R G 2011 Nejat A Nanotechnology 22 405202

    [9]

    Nie S, Emory S R 1997 Science 275 1102

    [10]

    Fleischmannand M, Hendra P J, Mc Quillan A 1974 J Chem. Phys. Lett. 26 163

    [11]

    Jeanmaire D L, van Duyne R P 1977 J. Electroanalyt. Chem. Interfac. Electrochem. 84 1

    [12]

    Berini P, de Leon J 2012 Nature Photon. 6 16

    [13]

    Bergman D J, Stockman M I 2003 Phys. Rev. Lett. 90 027402

    [14]

    Giannini V, Fernndez-Dominguez A I, Heck S C, Maier S A 2011 Chem. Rev. 111 3888

    [15]

    Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, van Duyne R P 2008 Nat. Mater. 7 442

    [16]

    Pines D A 1953 Phys. Rev. 92 626

    [17]

    Hopfield J J 1958 Phys. Rev. 112 1555

    [18]

    Elson J M, Ritchie R H 1971 Phys. Rev. B 4 4129

    [19]

    Waks E, Sridharan D 2010 Phys. Rev. A 82 043845

    [20]

    Tame M S, Lee C, Lee J, Ballester D, Paternostro M, Zayats A V, Kim M S 2008 Phys. Rev. Lett. 101 190504

    [21]

    Altewischer E, van Exter M P, Woerdman J P 2002 Nature 418 304

    [22]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [23]

    Fasel S, Robin F, Moreno E, Erni D, Gisin N, Zbinden H 2005 Phys. Rev. Lett. 94 110501

    [24]

    Ren X F, Guo G P, Huang Y F, Li C F, Guo G C 2006 Europhys. Lett. 76 753

    [25]

    Guo G P, Ren X F, Huang Y F, Li C F, Ou Z Y, Guo G C 2007 Phys. Lett. A 361 218

    [26]

    Huck A, Smolka S, Lodahl P, Srensen A S, Boltasseva A, Janousek J, Andersen U L 2009 Phys. Rev. Lett. 102 246802

    [27]

    Ren X F, Guo G P, Huang Y F, Wang Z W, Zhang P, Guo G C 2008 Europhys. Lett. 84 30005

    [28]

    Tang J S, Li Y L, Xu X Y, Xiang G Y, Li C F, Guo G C 2012 Nat. Photon. 6 600

    [29]

    Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Lukin M D 2007 Nature 450 402

    [30]

    Kolesov R, Grotz B, Balasubramanian G, Sthr R J, Nicolet A A L, Hemmer P R, Jelezko F, Wrachtrup J 2009 Nat. Phys. 5 470

    [31]

    Piazza L U C A, Lummen T T A, Quinonez E, Murooka Y, Reed B W, Barwick B, Carbone F 2015 Nat. Commun. 6 6407

    [32]

    Di Martino G, Sonnefraud Y, Kna-Cohen S, Tame M, Ozdemir S K, Kim M S, Maier S A 2012 Nano Lett. 12 2504

    [33]

    Falk A L, Koppens F H, Yu C L, Kang K, de Leon Snapp N, Akimov A V, Park H 2009 Nat. Phys. 5 475

    [34]

    Zou C L, Sun F W, Dong C H, Ren X F, Chen X D, Cui J M, Han Z F, Guo G C 2011 Opt. Lett. 36 3630

    [35]

    Dong C H, Zou C L, Ren X F, Guo G C, Sun F W 2012 Appl. Phys. Lett. 100 041104

    [36]

    Xiong X, Zou C L, Ren X F, Guo G C 2014 IEEE Photon. Tech. Lett. 26 1726

    [37]

    Wei H, Wang Z, Tian X, Kall M, Xu H 2011 Nat. Commun. 2 387

    [38]

    Holtfrerich M W, Dowran M, Davidson R, Lawrie B J, Pooser R C, Marino A M 2016 Optica 3 985

    [39]

    De Leon N P, Lukin M D, Park H 2012 IEEE J. Select. Topics in Quantum Electron. 18 1781

    [40]

    Otto A 1968 Zeitschrift fr Physik 216 398

    [41]

    Kano H, Mizuguchi S, Kawata S 1998 JOSAB 15 1381

    [42]

    Guo X, Ma Y G, Wang Y P, Tong L M 2013 Laser Photon. Rev. 7 855

    [43]

    Dong C H, Ren X F, Yang R, Duan J Y, Guan J G, Guo G C, Guo G P 2009 Appl. Phys. Lett. 95 221109

    [44]

    Guo X, Qiu M, Bao J, Wiley B J, Yang Q, Zhang X, Tong L 2009 Nano Lett. 9 4515

    [45]

    Kauranen M, Zayats A V 2012 Nat. Photon. 6 737

    [46]

    Grosse N B, Heckmann J, Woggon U 2012 Phys. Rev. Lett. 108 136802

    [47]

    Politi A, Cryan M J, Rarity J G, Yu S, O'brien J L 2008 Science 320 646

    [48]

    Fujii G, Segawa T, Mori S, Namekata N, Fukuda D, Inoue S 2012 Opt. Lett. 37 1535

    [49]

    Heeres R W, Kouwenhoven L P, Zwiller V 2013 Nat. Nanotech. 8 719

    [50]

    Fakonas J S, Lee H, Kelaita Y A, Atwater H A 2014 Nat. Photon. 8 317

    [51]

    Cai Y J, Li M, Ren X F, Zou C L, Xiong X, Lei H L, Liu B H, Guo G P, Guo G C 2014 Phys. Rev. Appl. 2 014004

    [52]

    Di Martino G, Sonnefraud Y, Tame M S, Kna-Cohen S, Dieleman F, zdemir Ş K, Maier S A 2014 Phys. Rev. Appl. 1 034004

    [53]

    Vest B, Dheur M, Devaux E, Ebbesen T W, Baron A, Rousseau E, Hugonin J P, Greffet J, Messin G, Marquier F 2016 arXiv:161007479 [quant-ph]

    [54]

    Wang S M, Cheng Q Q, Gong, Xu P, Sun C, Li L, Li T, Zhu S N 2016 Nat. Commun. 7 11490

    [55]

    Li M, Zou C L, Ren X F, Xiong X, Cai Y J, Guo G P, Tong L M, Guo G C 2015 Nano Lett. 15 2380

    [56]

    Fan W, Lawrie B J, Pooser R C 2015 Phys. Rev. A 92 053812

    [57]

    Lee C, Dieleman F, Lee J, Rockstuhl C, Maier S A, Tame M 2016 ACS Photon. 3 992

    [58]

    Heeres R W, Dorenbos S N, Koene B, Solomon G S, Kouwenhoven L P, Zwiller V 2009 Nano Lett. 10 661

    [59]

    Hood C J, Chapman M S, Lynn T W, Kimble H J 1998 Phys. Rev. Lett. 80 4157

    [60]

    Chang D E, Srensen A S, Hemmer P R, Lukin M D 2006 Phys. Rev. Lett. 97 053002

    [61]

    Drexhage K H, Kuhn H, Schfer F P 1968 Phys. Chem. 72 329

    [62]

    Purcell E M 1946 Phys. Rev. 69 674

    [63]

    Li M, Xiong X, Yu L, Zou C L, Chen Y, Liu D, Guo G C 2017 ar Xiv:170102935

    [64]

    Chang D E, Srensen A S, Hemmer P R, Lukin M D 2007 Phys. Rev. B 76 035420

    [65]

    Chang D E, Srensen A S, Demler E A, Lukin M D 2007 Nat. Phys. 3 807

    [66]

    Trgler A, Hohenester U 2008 Phys. Rev. B 77 115403

    [67]

    Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R, van Hulst N F 2010 Science 329 930

    [68]

    Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Mllen K, Moerner W E 2009 Nature Photon. 3 654

    [69]

    Koenderink A F 2010 Opt. Lett. 35 4208

    [70]

    Rice P R, Brecha R J 1995 Opt. Commun. 126 230

    [71]

    Ridolfo A, Di Stefano O, Fina N, Saija R, Savasta S 2010 Phys. Rev. Lett. 105 263601

    [72]

    Yannopapas V, Paspalakis E, Vitanov N V 2009 Phys. Rev. Lett. 103 063602

    [73]

    Li Q, Wei H, Xu H X 2014 Nano Lett. 14 3358

    [74]

    Zhang S, Wei H, Bao L, Hakanson U, Halas N J, Nordlander P, Xu H X 2011 Phys. Rev. Lett. 107 096801

    [75]

    Li Q, Wei H, Xu H X 2015 Nano Lett. 15 8181

    [76]

    Anger P, Bharadwaj P, Novotny L 2006 Phys. Rev. Lett. 96 113002

    [77]

    Passmore B S, Adams D C, Ribaudo T, Wasserman D, Lyon S, Davids P, Shaner E A 2011 Nano Lett. 11 338

    [78]

    Vasa P, Wang W, Pomraenke R, Lammers M, Maiuri M, Manzoni C, Lienau C 2013 Nature Photon. 7 128

    [79]

    Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Baumberg J J 2016 Nature 535 127

    [80]

    Martin-Cano D, Gonzlez-Tudela A, Martn-Moreno L, Garcia-Vidal F J, Tejedor C, Moreno E 2011 Phys. Rev. B 84 235306

    [81]

    Lin Z R, Guo G P, Tu T, Li H O, Zou C L, Chen J X, Guo G C 2010 Phys. Rev. B 82 241401

    [82]

    Constant T J, Hornett S M, Chang D E, Hendry E 2016 Nat. Phys. 12 124

    [83]

    Gullans M, Tiecke T G, Chang D E, Feist J, Thompson J D, Cirac J I, Lukin M D 2012 Phys. Rev. Lett. 109 235309

  • [1] Zhang Quan, Tang Chao-Jing, Gao Feng. . Acta Physica Sinica, 2002, 51(1): 15-20. doi: 10.7498/aps.51.15
    [2] Xing Li-Juan, Li Zhuo, Zhang Wu-Jun. Strengthened quantum Hamming bound. Acta Physica Sinica, 2011, 60(5): 050304. doi: 10.7498/aps.60.050304
    [3] Dou Jian-Peng, Li Hang, Pang Xiao-Ling, Zhang Chao-Ni, Yang Tian-Huai, Jin Xian-Min. Research progress of quantum memory. Acta Physica Sinica, 2019, 68(3): 030307. doi: 10.7498/aps.68.20190039
    [4] Li Zhuo, Xing Li-Juan. Quantum Generalized Reed-Solomon codes. Acta Physica Sinica, 2008, 57(1): 28-30. doi: 10.7498/aps.57.28
    [5] Xing Li-Juan, Li Zhuo, Bai Bao-Ming, Wang Xin-Mei. Encoding and decoding of quantum convolutional codes. Acta Physica Sinica, 2008, 57(8): 4695-4699. doi: 10.7498/aps.57.4695
    [6] Li Zhuo, Xing Li-Juan. Error bases, group algebra and quantum codes. Acta Physica Sinica, 2013, 62(13): 130306. doi: 10.7498/aps.62.130306
    [7] Shi Bao-Sen, Ding Dong-Sheng, Zhang Wei, Li En-Ze. Raman protocol-based quantum memories. Acta Physica Sinica, 2019, 68(3): 034203. doi: 10.7498/aps.68.20182215
    [8] Yin Ji-Wen, Xiao Jing-Lin, Yu Yi-Fu, Wang Zi-Wu. The effect of Coulomb potential to the decoherence of the parabolic quantum dot qubit. Acta Physica Sinica, 2008, 57(5): 2695-2698. doi: 10.7498/aps.57.2695
    [9] Li Zhuo, Xing Li-Juan. A family of asymptotically good quantum codes based on code concatenation. Acta Physica Sinica, 2007, 56(10): 5602-5606. doi: 10.7498/aps.56.5602
    [10] Wang Yun-Jiang, Bai Bao-Ming, Wang Xin-Mei. Feedback iterative decoding of sparse quantum codes. Acta Physica Sinica, 2010, 59(11): 7591-7595. doi: 10.7498/aps.59.7591
    [11] Zhang Quan, Zhang Er-Yang. . Acta Physica Sinica, 2002, 51(8): 1684-1689. doi: 10.7498/aps.51.1684
    [12] Zhang Quan, Tang Chao-Jing, Zhang Shen-Qiang. . Acta Physica Sinica, 2002, 51(7): 1439-1447. doi: 10.7498/aps.51.1439
    [13] Peng Jin-Ye, Wang Yun-Jiang, Wang Xin-Mei, Bai Bao-Ming. Feedback sum-product decoding of sparse quantum codes for X-Z Pauli channels. Acta Physica Sinica, 2011, 60(3): 030306. doi: 10.7498/aps.60.030306
    [14] Li Bao-Min, Hu Ming-Liang, Fan Heng. Quantum coherence. Acta Physica Sinica, 2019, 68(3): 030304. doi: 10.7498/aps.68.20181779
    [15] Wang Zi-Wu, Xiao Jing-Lin. Parabolic linear bound potential quantum dot qubit and its optical phonon effect. Acta Physica Sinica, 2007, 56(2): 678-682. doi: 10.7498/aps.56.678
    [16] Jiang Fu-Shi, Zhao Cui-Lan. The phonon effect of qubit in quantum ring. Acta Physica Sinica, 2009, 58(10): 6786-6790. doi: 10.7498/aps.58.6786
    [17] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [18] Wang Han-Cong, Li Zhi-Peng. Advances in surface-enhanced optical forces and optical manipulations. Acta Physica Sinica, 2019, 68(14): 144101. doi: 10.7498/aps.68.20190606
    [19] Zhang Wen-Jun, Gao Long, Wei Hong, Xu Hong-Xing. Modulation of propagating surface plasmons. Acta Physica Sinica, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [20] Li Pan. Research progress of plasmonic nanofocusing. Acta Physica Sinica, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
  • Citation:
Metrics
  • Abstract views:  1946
  • PDF Downloads:  702
  • Cited By: 0
Publishing process
  • Received Date:  24 March 2017
  • Accepted Date:  26 April 2017
  • Published Online:  05 July 2017

Recent progress of the application of surface plasmon polariton in quantum information processing

    Corresponding author: Ren Xi-Feng, renxf@ustc.edu.cn
  • 1. Chinese Academy of Sciences Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
  • 2. Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 11374289, 61590932), the National Key Rresearch and Development Program, China (Grant No. 2016YFA0301700), the Fundamental Research Funds for the Central Universities, China and the Open Fund of the State Key Laboratory on Integrated Optoelectronics (Grant No. IOSKL2015KF12).

Abstract: Surface plasmon polariton has attracted more and more attention and has been studied extensively in the recent decades, owing to its ability to confine the electro-magnetic field to a sub-wavelength scale near the metal-dielectric interface. On one hand, the tightly confined surface plasmonic modes can reduce the size of integrated optical device beyond the diffraction limit; on the other hand, it provides an approach to enhancing the interaction between light and matter. With the development of experimental and numerical simulation techniques, its investigation at a quantum level has become possible. In the recent experiments, scientists have realized quantum interference between single plasmons in a nanoscale waveguide circuit and achieved the strong coupling between photons and single molecules by using plasmonic structure, which demonstrates its superiority over the traditional optics. Here, we review the theoretical and experimental researches of surface plasmon polariton in the field of quantum information processing. First, we introduce the experiments on the basic quantum properties of surface plasmons, including the preservation of photonic entanglement, wave-particle duality and quantum statistical property. Second, we review the research work relating to the generation, manipulation and detection of surface plasmons in a quantum plasmonic integrated circuit. Then, we present the research of the interaction between surface plasmons and single quantum emitters and its potential applications. Finally, we make a discussion on how the intrinsic loss affects the quantum interference of single plasmons and the coupling between quantum emitters. The collision and combination of quantum optical and plasmonic fields open up possibilities for investigating the fundamental quantum physical properties of surface plasmons. It can be used to make ultra-compact quantum photonic integrated circuits and enhance the interaction strength between photons and quantum emitters.

Reference (83)

Catalog

    /

    返回文章
    返回