Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The mechanisms and research progress of laser fabrication technologies beyond diffraction limit

Zhang Xin-Zheng Xia Feng Xu Jing-Jun

The mechanisms and research progress of laser fabrication technologies beyond diffraction limit

Zhang Xin-Zheng, Xia Feng, Xu Jing-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Laser is recognized as one of the top technological achievements of 20th century and plays an important role in many fields, such as medicine, industry, entertainment and so on. Laser processing technology is one of the earliest and most developed applications of laser. With the rapid development of nanoscience and nanotechnology and micro/nano electronic devices, the micro/nanofabrication technologies become increasingly demanding in manufacturing industries. In order to realize low-cost, large-area and especially high-precision micro-nanofabrication, it has great scientific significance and application value to study and develop the laser fabrication technologies that can break the diffraction limit. In this article, the super resolution laser fabrication technologies are classified into two groups, far-filed laser direct writing technologies and near-field laser fabrication technologies. Firstly, the mechanisms and progress of several far-field laser direct writing technologies beyond the diffraction limit are summarized, which are attributed to the lasermatter nonlinear interaction. The super-diffraction laser ablation was achieved for the temperature-dependent reaction of materials with the Gaussian distribution laser, and the super-diffraction laser-induced oxidation in Metal-Transparent Metallic Oxide grayscale photomasks was realized by the laser-induced Cabrera-Mott oxidation process. Besides, the multi-photon polymerization techniques including degenerate/non-degenerate two-photon polymerization are introduced and the resolution beyond the diffraction limit was achieved based on the third-order nonlinear optical process. Moreover, the latest stimulated emission depletion technique used in the laser super-resolution fabrication is also introduced. Secondly, the mechanisms and recent advances of novel super diffraction near-field laser fabrication technologies based on the evanescent waves or surface plasmon polaritons are recommended. Scanning near-field lithography used a near-field scanning optical microscope coupled with a laser to create nanoscale structures with a resolution beyond 100 nm. Besides, near-field optical lithography beyond the diffraction limit could also be achieved through super resolution near-field structures, such as a bow-tie nanostructure. The interference by the surface plasmon polariton waves could lead to the fabrication of super diffraction interference fringe structures with a period smaller than 100 nm. Moreover, a femtosecond laser beam could also excite and interfere with surface plasmon polaritons to form laser-induced periodic surface structures. Furthermore, the super-resolution superlens and hyperlens imaging lithography are introduced. Evanescent waves could be amplified by using the superlens of metal film to improve the optical lithography resolution beyond the diffraction resolution. The unique anisotropic dispersion of hyperlens could provide the high wave vector component without the resonance relationship, which could also realize the super resolution imaging. Finally, prospective research and development tend of super diffraction laser fabrication technologies are presented. It is necessary to expand the range of materials which can be fabricated by laser beyond the diffraction limit, especially 2D materials.
      Corresponding author: Xu Jing-Jun, jjxu@nankai.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB328702), the National Natural Science Foundation of China (Grant No. 11674182), the Natural Science Foundation of Tianjin, China (Grant No. 17JCYBJC16700), the 111 Project, China (Grant No. B07013), the PCSIRT (Grant No. IRT_13R29), and the Collaborative Innovation Center of Extreme Optics of Shanxi University, China.
    [1]

    Wagner C, Harned N 2010 Nat. Photon. 4 24

    [2]

    Gale M T, Knop K 1983 Proc. SPIE 0398 347

    [3]

    Roth W, Schumacher H, Beneking H 1983 Electron. Lett. 19 142

    [4]

    Rensch C, Hell S, Schickfus M V, Hunklinger S 1989 Appl. Opt. 28 3754

    [5]

    Goltsos W C, Liu S A 1990 Proc. SPIE 1211 137

    [6]

    Haruna M, Takahashi M, Wakahayashi K, Nishihara H 1990 Appl. Opt. 29 5120

    [7]

    Cui Z 2005 Micro-Nanofabrication Technologies and Applications (Beijing: Higher Education Press) p51

    [8]

    Wang Y, Guo C, Cao S, Miao J, Ren T, Liu Q 2010 J. Nanosci. Nanotechnol. 10 7134

    [9]

    Liu Q, Duan X, Peng C 2014 Novel Optical Technologies for Nanofabrication (Berlin Heidelberg: Springer-Verlag) p8

    [10]

    Kurihara K, Nakano T, Ikeya H, Ujiie M, Tominaga J 2008 Microelectron. Eng. 85 1197

    [11]

    Hao Y F, Sun M Y, Shi S, Pan X, Zhu J Q 2017 Chin. J. Lasers 44 0102015 (in Chinese) [郝艳飞, 孙明营, 时双, 潘雪, 朱健强 2017 中国激光 44 0102015]

    [12]

    Yun Z Q, Wei R S, Li W, Luo W W, Wu Q, Xu X G, Zhang X Z 2013 Acta Phys. Sin. 62 068101 (in Chinese) [云志强, 魏汝省, 李威, 罗维维, 吴强, 徐现刚, 张心正 2013 物理学报 62 068101]

    [13]

    He F, Xu H, Cheng Y, Ni J, Xiong H, Xu Z, Sugioka K, Midorikawa K 2010 Opt. Lett. 35 1106

    [14]

    Block E, Greco M, Vitek D, Masihzadeh O, Ammar D A, Kahook M Y, Mandava N, Durfee C, Squier J 2013 Biomed. Opt. Exp. 4 831

    [15]

    Guo C F, Cao S, Jiang P, Fang Y, Zhang J, Fan Y, Wang Y, Xu W, Zhao Z, Liu Q 2009 Opt. Express 17 19981

    [16]

    Guo C F, Zhang J, Miao J, Fan Y, Liu Q 2010 Opt. Express 18 2621

    [17]

    Guo C F, Zhang Z, Cao S, Liu Q 2009 Opt. Lett. 34 2820

    [18]

    Wang M, Wang C, Tian Y, Zhang J, Guo C, Zhang X, Liu Q 2014 Appl. Surf. Sci. 296 209

    [19]

    Wang Y, Miao J, Tian Y, Guo C, Zhang J, Ren T, Liu Q 2011 Opt. Express 19 17390

    [20]

    Xia F, Zhang X Z, Wang M, Yi S, Liu Q, Xu J J 2014 Opt. Express 22 16889

    [21]

    Xia F, Zhang X Z, Wang M, Liu Q, Xu J J 2015 Opt. Express 23 29193

    [22]

    Kaiser W, Garrett C G B 1961 Phys. Rev. Lett. 7 229

    [23]

    Maruo S, Nakamura O, Kawata S 1997 Opt. Lett. 22 132

    [24]

    Kawata S, Sun H B, Tanaka T, Takada K 2001 Nature 412 697

    [25]

    Sun H B, Kawakami T, Xu Y, Ye J Y, Matuso S, Misawa H, Miwa M, Kaneko R 2000 Opt. Lett. 25 1110

    [26]

    Sun H B, Suwa T, Takada K, Zaccaria R P, Kim M S, Lee K S, Kawata S 2004 Appl. Phys. Lett. 85 3708

    [27]

    Boyd R W 2003 Nonlinear Optics-Handbook of Laser Technology and Applications (Philadelphia: Taylor Francis) p161

    [28]

    Takada K, Sun H B, Kawata S 2005 Appl. Phys. Lett. 86 071122

    [29]

    Wu D, Chen Q D, Niu L G, Jiao J, Xia H, Song J F, Sun H B 2009 IEEE Photon. Tech. L. 21 1535

    [30]

    Wu D, Niu L G, Chen Q D, Wang R, Sun H B 2008 Opt. Lett. 33 2913

    [31]

    Xia H, Wang J, Tian Y, Chen Q D, Du X B, Zhang Y L, He Y, Sun H B 2010 Adv. Mater. 22 3204

    [32]

    Sun Y L, Dong W F, Yang R Z, Meng X, Zhang L, Chen Q D, Sun H B 2012 Angew. Chem. Int. Ed. 51 1558

    [33]

    Sun Y L, Dong W F, Niu L G, Jiang T, Liu D X, Zhang L, Wang Y S, Chen Q D, Kim D P, Sun H B 2014 Light: Sci. Appl. 3 e129

    [34]

    Xing J F, Dong X Z, Chen W Q, Duan X M, Takeyasu N, Tanaka T, Kawata S 2007 Appl. Phys. Lett. 90 131106

    [35]

    Dong X Z, Zhao Z S, Duan X M 2008 Appl. Phys. Lett. 92 091113

    [36]

    Song Y, Dong X Z, Zhao Z S, Duan X M 2011 High Power Laser Part Beams 23 1780 (in Chinese) [宋旸, 董贤子, 赵震声, 段宣明 2011 强激光与粒子束 23 1780]

    [37]

    Gan Z, Cao Y, Evans R A, Gu M 2013 Nat. Commun. 4 2061

    [38]

    Li W, Cao T X, Zhai Z, Yu X, Zhang X Z, Xu J J 2013 Nanotechnology 24 215301

    [39]

    Long J, Xiong W, Liu Y, Jiang L J, Zhou Y S, Li D W, Jiang L, Lu Y F 2017 Chin. J. Lasers 44 0102003 (in Chinese) [龙婧, 熊伟, 刘莹, 蒋立佳, 周云申, 李大卫, 姜澜, 陆永枫 2017 中国激光 44 0102003]

    [40]

    Liu L P, Zhan S J, Yang H, Gong Q H, Li Y 2017 Chin. J. Lasers 44 0102006 (in Chinese) [刘力谱, 张世杰, 杨宏, 龚旗煌, 李焱 2017 中国激光 44 0102006]

    [41]

    Sugioka K 2017 Nanophotonics 6 393

    [42]

    Wu Y E, Ren M X, Wang Z H, Li W, Wu Q, Yi S, Zhang X Z, Xu J J 2014 AIP Adv. 4 057107

    [43]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780

    [44]

    Klar T A, Jakobs S, Dyba M, Egner A, Hell S W 2000 Proc. Natl. Acad. Sci. USA 97 8206

    [45]

    Hell S W, Dyba M, Jakobs S 2004 Curr. Opin. Neurobiol. 14 599

    [46]

    Li L, Gattass R R, Gershgoren E, Hwang H, Fourkas J T 2009 Science 324 910

    [47]

    Scott T F, Kowalski B A, Sullivan A C, Bowman C N, Mcleod R R 2009 Science 324 913

    [48]

    Andrew T L, Tsai H Y, Menon R 2009 Science 324 917

    [49]

    Fischer J, von Freymann G, Wegener M 2010 Adv. Mater. 22 3578

    [50]

    Wollhofen R, Katzmann J, Hrelescu C, Jacak J, Klar T A 2013 Opt. Express 21 10831

    [51]

    Kilby J S 1976 IEEE Trans. Electron Devices 23 648

    [52]

    Chong T C, Hong M H, Shi L P 2010 Laser Photon. Rev. 4 123

    [53]

    Zhou W, Bridges D, Li R, Bai S, Ma Y, Hou T, Hu A 2016 Sci. Lett. J. 5 228

    [54]

    Krausch G, Wegscheider S, Kirsch A, Bielefeldt H, Meiners J, Mlynek J 1995 Opt. Commun. 119 283

    [55]

    Sun S, Leggett G J 2002 Nano Lett. 2 1223

    [56]

    Sun S, Leggett G J 2004 Nano Lett. 4 1381

    [57]

    Grigoropoulos C P, Hwang D J 2007 MRS bull. 32 16

    [58]

    Wang L, Uppuluri S M, Jin E X, Xu X 2006 Nano Lett. 6 361

    [59]

    Kim S, Jung H, Kim Y, Jang J, Hahn J W 2012 Adv. Mater. 24 OP337

    [60]

    Terris B, Mamin H, Rugar D, Studenmund W, Kino G 1994 Appl. Phys. Lett. 65 388

    [61]

    Terris B, Mamin H, Rugar D 1996 Appl. Phys. Lett. 68 141

    [62]

    Tominaga J, Nakano T, Atoda N 1988 Appl. Phys. Lett. 73 2078

    [63]

    Kuwahara M, Nakano T, Tominaga J, Lee M B, Atoda N 1999 Jpn. J. Appl. Phys. 38 L1079

    [64]

    Kuwahara M, Nakano T, Mihalcea C, Shima T, Kim J H, Tominaga J, Atoda N 2001 Microelectron. Eng. 57-58 883

    [65]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [66]

    Wang C, Zhang W, Zhao Z, Wang Y, Gao P, Luo Y, Luo X 2016 Micromachines 7 118

    [67]

    Luo X, Ishihara T 2004 Appl. Phys. Lett. 84 4780

    [68]

    Liu Z W, Wei Q H, Zhang X 2005 Nano Lett. 5 957

    [69]

    Liu Z, Wang Y, Yao J, Lee H, Srituravanich W, Zhang X 2009 Nano Lett. 9 462

    [70]

    Xu T, Fang L, Ma J, Zeng B, Liu Y, Cui J, Wang C, Feng Q, Luo X 2009 Appl. Phys. B: Lasers O. 97 175

    [71]

    Dong J, Liu J, Kang G, Xie J, Wang Y 2014 Sci. Rep. 4 5618

    [72]

    Chen X, Yang F, Zhang C, Zhou J, Guo L J 2016 ACS Nano 10 4039

    [73]

    Liang G, Wang C, Zhao Z, Wang Y, Yao N, Gao P, Luo Y, Gao G, Zhao Q, Luo X 2015 Adv. Opt. Mater. 3 1248

    [74]

    Li Y, Liu F, Xiao L, Cui K, Feng X, Zhang W, Huang Y 2013 Appl. Phys. Lett. 102 063113

    [75]

    Li Y, Liu F, Ye Y, Meng W, Cui K, Feng X, Zhang W, Huang Y 2014 Appl. Phys. Lett. 104 081115

    [76]

    Birnbaum M 1965 J. Appl. Phys. 36 3688

    [77]

    Borowiec A, Haugen H 2003 Appl. Phys. Lett. 82 4462

    [78]

    Jia T, Chen H, Huang M, Zhao F, Qiu J, Li R, Xu Z, He X, Zhang J, Kuroda H 2005 Phys. Rev. B 72 125429

    [79]

    Vorobyev A, Guo C 2005 Phys. Rev. B 72 195422

    [80]

    Qi L T, Nishii K, Namba Y 2009 Opt. Lett. 34 1846

    [81]

    Oktem B, Pavlov I, Ilday S, Kalaycioglu H, Rybak A, Yavas S, Erdogan M, Ilday F O 2013 Nat. Photon. 7 897

    [82]

    Bonse J, Hhm S, Rosenfeld A, Krger J 2013 Appl. Phys. A 110 547

    [83]

    He X, Datta A, Nam W, Traverso L M, Xu X 2016 Sci. Rep. 6 35035

    [84]

    Huang M, Zhao F, Cheng Y, Xu N, Xu Z 2009 ACS Nano 3 4062

    [85]

    Yuan Y, Jiang L, Li X, Wang C, Lu Y 2012 J. Appl. Phys. 112 103103

    [86]

    Yang M, Wu Q, Chen Z, Zhang B, Tang B, Yao J, Drevensek Olenik I, Xu J J 2014 Opt. Lett. 39 343

    [87]

    Shimotsuma Y, Kazansky P G, Qiu J, Hirao K 2003 Phys. Rev. Lett. 91 247405

    [88]

    Wang Y C, Zhang F T, Qiu J R 2017 Chin. J. Lasers 44 0102001 (in Chinese) [王珏晨, 张芳腾, 邱建荣 2017 中国激光 44 0102001]

    [89]

    Dai Y, Wu G, Lin X, Ma G, Qiu J R 2012 Opt. Express 20 18072

    [90]

    Liao Y, Ni J, Qiao L, Huang M, Bellouard Y, Sugioka K, Cheng Y 2015 Optica 2 329

    [91]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [92]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [93]

    Chaturvedi P, Wu W, Logeeswaran V, Yu Z, Islam M S, Wang S Y, Williams R S, Fang N X 2010 Appl. Phys. Lett. 96 043102

    [94]

    Liu H, Wang B, Ke L, Deng J, Chum C C, Teo S L, Shen L, Maier S A, Teng J 2012 Nano Lett. 12 1549

    [95]

    Jacob Z, Alekseyev L V, Narimanov E 2006 Opt. Express 14 8247

    [96]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686

    [97]

    Lee H, Liu Z, Xiong Y, Sun C, Zhang X 2007 Opt. Express 15 15886

    [98]

    Rho J, Ye Z, Xiong Y, Yin X, Liu Z, Choi H, Bartal G, Zhang X 2010 Nat. Commun. 1 143

    [99]

    Xiong Y, Liu Z, Zhang X 2008 Appl. Phys. Lett. 93 111116

    [100]

    Xiong Y, Liu Z, Zhang X 2009 Appl. Phys. Lett. 94 203108

    [101]

    Chen L, Wang G P 2009 Opt. Express 17 3903

    [102]

    Aronovich D, Bartal G 2013 Opt. Lett. 38 413

    [103]

    Zhang T, Chen L, Li X 2013 Opt. Express 21 20888

    [104]

    Xu F, Chen G, Wang C, Cao B, Lou Y 2013 Opt. Lett. 38 3819

    [105]

    Gao P, Yao N, Wang C, Zhao Z, Luo Y, Wang Y, Gao G, Liu K, Zhao C, Luo X 2015 Appl. Phys. Lett. 106 093110

  • [1]

    Wagner C, Harned N 2010 Nat. Photon. 4 24

    [2]

    Gale M T, Knop K 1983 Proc. SPIE 0398 347

    [3]

    Roth W, Schumacher H, Beneking H 1983 Electron. Lett. 19 142

    [4]

    Rensch C, Hell S, Schickfus M V, Hunklinger S 1989 Appl. Opt. 28 3754

    [5]

    Goltsos W C, Liu S A 1990 Proc. SPIE 1211 137

    [6]

    Haruna M, Takahashi M, Wakahayashi K, Nishihara H 1990 Appl. Opt. 29 5120

    [7]

    Cui Z 2005 Micro-Nanofabrication Technologies and Applications (Beijing: Higher Education Press) p51

    [8]

    Wang Y, Guo C, Cao S, Miao J, Ren T, Liu Q 2010 J. Nanosci. Nanotechnol. 10 7134

    [9]

    Liu Q, Duan X, Peng C 2014 Novel Optical Technologies for Nanofabrication (Berlin Heidelberg: Springer-Verlag) p8

    [10]

    Kurihara K, Nakano T, Ikeya H, Ujiie M, Tominaga J 2008 Microelectron. Eng. 85 1197

    [11]

    Hao Y F, Sun M Y, Shi S, Pan X, Zhu J Q 2017 Chin. J. Lasers 44 0102015 (in Chinese) [郝艳飞, 孙明营, 时双, 潘雪, 朱健强 2017 中国激光 44 0102015]

    [12]

    Yun Z Q, Wei R S, Li W, Luo W W, Wu Q, Xu X G, Zhang X Z 2013 Acta Phys. Sin. 62 068101 (in Chinese) [云志强, 魏汝省, 李威, 罗维维, 吴强, 徐现刚, 张心正 2013 物理学报 62 068101]

    [13]

    He F, Xu H, Cheng Y, Ni J, Xiong H, Xu Z, Sugioka K, Midorikawa K 2010 Opt. Lett. 35 1106

    [14]

    Block E, Greco M, Vitek D, Masihzadeh O, Ammar D A, Kahook M Y, Mandava N, Durfee C, Squier J 2013 Biomed. Opt. Exp. 4 831

    [15]

    Guo C F, Cao S, Jiang P, Fang Y, Zhang J, Fan Y, Wang Y, Xu W, Zhao Z, Liu Q 2009 Opt. Express 17 19981

    [16]

    Guo C F, Zhang J, Miao J, Fan Y, Liu Q 2010 Opt. Express 18 2621

    [17]

    Guo C F, Zhang Z, Cao S, Liu Q 2009 Opt. Lett. 34 2820

    [18]

    Wang M, Wang C, Tian Y, Zhang J, Guo C, Zhang X, Liu Q 2014 Appl. Surf. Sci. 296 209

    [19]

    Wang Y, Miao J, Tian Y, Guo C, Zhang J, Ren T, Liu Q 2011 Opt. Express 19 17390

    [20]

    Xia F, Zhang X Z, Wang M, Yi S, Liu Q, Xu J J 2014 Opt. Express 22 16889

    [21]

    Xia F, Zhang X Z, Wang M, Liu Q, Xu J J 2015 Opt. Express 23 29193

    [22]

    Kaiser W, Garrett C G B 1961 Phys. Rev. Lett. 7 229

    [23]

    Maruo S, Nakamura O, Kawata S 1997 Opt. Lett. 22 132

    [24]

    Kawata S, Sun H B, Tanaka T, Takada K 2001 Nature 412 697

    [25]

    Sun H B, Kawakami T, Xu Y, Ye J Y, Matuso S, Misawa H, Miwa M, Kaneko R 2000 Opt. Lett. 25 1110

    [26]

    Sun H B, Suwa T, Takada K, Zaccaria R P, Kim M S, Lee K S, Kawata S 2004 Appl. Phys. Lett. 85 3708

    [27]

    Boyd R W 2003 Nonlinear Optics-Handbook of Laser Technology and Applications (Philadelphia: Taylor Francis) p161

    [28]

    Takada K, Sun H B, Kawata S 2005 Appl. Phys. Lett. 86 071122

    [29]

    Wu D, Chen Q D, Niu L G, Jiao J, Xia H, Song J F, Sun H B 2009 IEEE Photon. Tech. L. 21 1535

    [30]

    Wu D, Niu L G, Chen Q D, Wang R, Sun H B 2008 Opt. Lett. 33 2913

    [31]

    Xia H, Wang J, Tian Y, Chen Q D, Du X B, Zhang Y L, He Y, Sun H B 2010 Adv. Mater. 22 3204

    [32]

    Sun Y L, Dong W F, Yang R Z, Meng X, Zhang L, Chen Q D, Sun H B 2012 Angew. Chem. Int. Ed. 51 1558

    [33]

    Sun Y L, Dong W F, Niu L G, Jiang T, Liu D X, Zhang L, Wang Y S, Chen Q D, Kim D P, Sun H B 2014 Light: Sci. Appl. 3 e129

    [34]

    Xing J F, Dong X Z, Chen W Q, Duan X M, Takeyasu N, Tanaka T, Kawata S 2007 Appl. Phys. Lett. 90 131106

    [35]

    Dong X Z, Zhao Z S, Duan X M 2008 Appl. Phys. Lett. 92 091113

    [36]

    Song Y, Dong X Z, Zhao Z S, Duan X M 2011 High Power Laser Part Beams 23 1780 (in Chinese) [宋旸, 董贤子, 赵震声, 段宣明 2011 强激光与粒子束 23 1780]

    [37]

    Gan Z, Cao Y, Evans R A, Gu M 2013 Nat. Commun. 4 2061

    [38]

    Li W, Cao T X, Zhai Z, Yu X, Zhang X Z, Xu J J 2013 Nanotechnology 24 215301

    [39]

    Long J, Xiong W, Liu Y, Jiang L J, Zhou Y S, Li D W, Jiang L, Lu Y F 2017 Chin. J. Lasers 44 0102003 (in Chinese) [龙婧, 熊伟, 刘莹, 蒋立佳, 周云申, 李大卫, 姜澜, 陆永枫 2017 中国激光 44 0102003]

    [40]

    Liu L P, Zhan S J, Yang H, Gong Q H, Li Y 2017 Chin. J. Lasers 44 0102006 (in Chinese) [刘力谱, 张世杰, 杨宏, 龚旗煌, 李焱 2017 中国激光 44 0102006]

    [41]

    Sugioka K 2017 Nanophotonics 6 393

    [42]

    Wu Y E, Ren M X, Wang Z H, Li W, Wu Q, Yi S, Zhang X Z, Xu J J 2014 AIP Adv. 4 057107

    [43]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780

    [44]

    Klar T A, Jakobs S, Dyba M, Egner A, Hell S W 2000 Proc. Natl. Acad. Sci. USA 97 8206

    [45]

    Hell S W, Dyba M, Jakobs S 2004 Curr. Opin. Neurobiol. 14 599

    [46]

    Li L, Gattass R R, Gershgoren E, Hwang H, Fourkas J T 2009 Science 324 910

    [47]

    Scott T F, Kowalski B A, Sullivan A C, Bowman C N, Mcleod R R 2009 Science 324 913

    [48]

    Andrew T L, Tsai H Y, Menon R 2009 Science 324 917

    [49]

    Fischer J, von Freymann G, Wegener M 2010 Adv. Mater. 22 3578

    [50]

    Wollhofen R, Katzmann J, Hrelescu C, Jacak J, Klar T A 2013 Opt. Express 21 10831

    [51]

    Kilby J S 1976 IEEE Trans. Electron Devices 23 648

    [52]

    Chong T C, Hong M H, Shi L P 2010 Laser Photon. Rev. 4 123

    [53]

    Zhou W, Bridges D, Li R, Bai S, Ma Y, Hou T, Hu A 2016 Sci. Lett. J. 5 228

    [54]

    Krausch G, Wegscheider S, Kirsch A, Bielefeldt H, Meiners J, Mlynek J 1995 Opt. Commun. 119 283

    [55]

    Sun S, Leggett G J 2002 Nano Lett. 2 1223

    [56]

    Sun S, Leggett G J 2004 Nano Lett. 4 1381

    [57]

    Grigoropoulos C P, Hwang D J 2007 MRS bull. 32 16

    [58]

    Wang L, Uppuluri S M, Jin E X, Xu X 2006 Nano Lett. 6 361

    [59]

    Kim S, Jung H, Kim Y, Jang J, Hahn J W 2012 Adv. Mater. 24 OP337

    [60]

    Terris B, Mamin H, Rugar D, Studenmund W, Kino G 1994 Appl. Phys. Lett. 65 388

    [61]

    Terris B, Mamin H, Rugar D 1996 Appl. Phys. Lett. 68 141

    [62]

    Tominaga J, Nakano T, Atoda N 1988 Appl. Phys. Lett. 73 2078

    [63]

    Kuwahara M, Nakano T, Tominaga J, Lee M B, Atoda N 1999 Jpn. J. Appl. Phys. 38 L1079

    [64]

    Kuwahara M, Nakano T, Mihalcea C, Shima T, Kim J H, Tominaga J, Atoda N 2001 Microelectron. Eng. 57-58 883

    [65]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [66]

    Wang C, Zhang W, Zhao Z, Wang Y, Gao P, Luo Y, Luo X 2016 Micromachines 7 118

    [67]

    Luo X, Ishihara T 2004 Appl. Phys. Lett. 84 4780

    [68]

    Liu Z W, Wei Q H, Zhang X 2005 Nano Lett. 5 957

    [69]

    Liu Z, Wang Y, Yao J, Lee H, Srituravanich W, Zhang X 2009 Nano Lett. 9 462

    [70]

    Xu T, Fang L, Ma J, Zeng B, Liu Y, Cui J, Wang C, Feng Q, Luo X 2009 Appl. Phys. B: Lasers O. 97 175

    [71]

    Dong J, Liu J, Kang G, Xie J, Wang Y 2014 Sci. Rep. 4 5618

    [72]

    Chen X, Yang F, Zhang C, Zhou J, Guo L J 2016 ACS Nano 10 4039

    [73]

    Liang G, Wang C, Zhao Z, Wang Y, Yao N, Gao P, Luo Y, Gao G, Zhao Q, Luo X 2015 Adv. Opt. Mater. 3 1248

    [74]

    Li Y, Liu F, Xiao L, Cui K, Feng X, Zhang W, Huang Y 2013 Appl. Phys. Lett. 102 063113

    [75]

    Li Y, Liu F, Ye Y, Meng W, Cui K, Feng X, Zhang W, Huang Y 2014 Appl. Phys. Lett. 104 081115

    [76]

    Birnbaum M 1965 J. Appl. Phys. 36 3688

    [77]

    Borowiec A, Haugen H 2003 Appl. Phys. Lett. 82 4462

    [78]

    Jia T, Chen H, Huang M, Zhao F, Qiu J, Li R, Xu Z, He X, Zhang J, Kuroda H 2005 Phys. Rev. B 72 125429

    [79]

    Vorobyev A, Guo C 2005 Phys. Rev. B 72 195422

    [80]

    Qi L T, Nishii K, Namba Y 2009 Opt. Lett. 34 1846

    [81]

    Oktem B, Pavlov I, Ilday S, Kalaycioglu H, Rybak A, Yavas S, Erdogan M, Ilday F O 2013 Nat. Photon. 7 897

    [82]

    Bonse J, Hhm S, Rosenfeld A, Krger J 2013 Appl. Phys. A 110 547

    [83]

    He X, Datta A, Nam W, Traverso L M, Xu X 2016 Sci. Rep. 6 35035

    [84]

    Huang M, Zhao F, Cheng Y, Xu N, Xu Z 2009 ACS Nano 3 4062

    [85]

    Yuan Y, Jiang L, Li X, Wang C, Lu Y 2012 J. Appl. Phys. 112 103103

    [86]

    Yang M, Wu Q, Chen Z, Zhang B, Tang B, Yao J, Drevensek Olenik I, Xu J J 2014 Opt. Lett. 39 343

    [87]

    Shimotsuma Y, Kazansky P G, Qiu J, Hirao K 2003 Phys. Rev. Lett. 91 247405

    [88]

    Wang Y C, Zhang F T, Qiu J R 2017 Chin. J. Lasers 44 0102001 (in Chinese) [王珏晨, 张芳腾, 邱建荣 2017 中国激光 44 0102001]

    [89]

    Dai Y, Wu G, Lin X, Ma G, Qiu J R 2012 Opt. Express 20 18072

    [90]

    Liao Y, Ni J, Qiao L, Huang M, Bellouard Y, Sugioka K, Cheng Y 2015 Optica 2 329

    [91]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [92]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [93]

    Chaturvedi P, Wu W, Logeeswaran V, Yu Z, Islam M S, Wang S Y, Williams R S, Fang N X 2010 Appl. Phys. Lett. 96 043102

    [94]

    Liu H, Wang B, Ke L, Deng J, Chum C C, Teo S L, Shen L, Maier S A, Teng J 2012 Nano Lett. 12 1549

    [95]

    Jacob Z, Alekseyev L V, Narimanov E 2006 Opt. Express 14 8247

    [96]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686

    [97]

    Lee H, Liu Z, Xiong Y, Sun C, Zhang X 2007 Opt. Express 15 15886

    [98]

    Rho J, Ye Z, Xiong Y, Yin X, Liu Z, Choi H, Bartal G, Zhang X 2010 Nat. Commun. 1 143

    [99]

    Xiong Y, Liu Z, Zhang X 2008 Appl. Phys. Lett. 93 111116

    [100]

    Xiong Y, Liu Z, Zhang X 2009 Appl. Phys. Lett. 94 203108

    [101]

    Chen L, Wang G P 2009 Opt. Express 17 3903

    [102]

    Aronovich D, Bartal G 2013 Opt. Lett. 38 413

    [103]

    Zhang T, Chen L, Li X 2013 Opt. Express 21 20888

    [104]

    Xu F, Chen G, Wang C, Cao B, Lou Y 2013 Opt. Lett. 38 3819

    [105]

    Gao P, Yao N, Wang C, Zhao Z, Luo Y, Wang Y, Gao G, Liu K, Zhao C, Luo X 2015 Appl. Phys. Lett. 106 093110

  • [1] Qiao Zhi-Xing, Qin Cheng-Bing, He Wen-Jun, Gong Ya-Ni, Xiao Lian-Tuan, Zhang Guo-Feng, Chen Rui-Yun, Gao Yan, Jia Suo-Tang. Lifetime modulation of graphene oxide film by laser direct writing for the fabrication of micropatterns. Acta Physica Sinica, 2018, 67(6): 066802. doi: 10.7498/aps.67.20172331
    [2] Yuan Qiang, Zhao Wen-Xuan, Ma Rui, Zhang Chen, Zhao Wei, Wang Shuang, Feng Xiao-Qiang, Wang Kai-Ge, Bai Jin-Tao. Sub-diffraction-limit spatially structured light pattern based on polarized beam phase modulation. Acta Physica Sinica, 2017, 66(11): 110201. doi: 10.7498/aps.66.110201
    [3] Liu Shuang-Long, Liu Wei, Chen Dan-Ni, Niu Han-Ben. Generation of dark hollow beams used in sub-diffraction-limit imaging in coherent anti-Stokes Raman scattering microscopy. Acta Physica Sinica, 2014, 63(21): 214601. doi: 10.7498/aps.63.214601
    [4] Yun Zhi-Qiang, Wei Ru-Sheng, Li Wei, Luo Wei-Wei, Wu Qiang, Xu Xian-Gang, Zhang Xin-Zheng. Sub-diffraction-limit fabrication of 6H-SiC with femtosecond laser. Acta Physica Sinica, 2013, 62(6): 068101. doi: 10.7498/aps.62.068101
    [5] Gao Si, Wang Zi-Han, Hua Jian-Guan, Li Qian-Kun, Li Ai-Wu, Yu Yan-Hao. Sub-diffraction-limit fabrication of sapphire by femtosecond laser direct writing. Acta Physica Sinica, 2017, 66(14): 147901. doi: 10.7498/aps.66.147901
    [6] Wei Wei-Hua, Li Mu-Tian, Liu Mo-Nan. Coupled microcavities with unidirectional single mode via femtosecond laser direct-writing. Acta Physica Sinica, 2018, 67(6): 064203. doi: 10.7498/aps.67.20172395
    [7] Jiao Yue, Tao Hai-Yan, Ji Bo-Yu, Song Xiao-Wei, Lin Jing-Quan. Near field enhancement of TiO2 nanoparticle array on different substrates for femtosecond laser processing. Acta Physica Sinica, 2017, 66(14): 144203. doi: 10.7498/aps.66.144203
    [8] Zhang Qian, Li Meng, Gong Qi-Huang, Li Yan. Femtosecond laser direct writing of optical quantum logic gates. Acta Physica Sinica, 2019, 68(10): 104205. doi: 10.7498/aps.68.20190024
    [9] Li Shi-Xiong, Bai Zhong-Chen, Huang Zheng, Zhang Xin, Qin Shui-Jie, Mao Wen-Xue. Study on the machining mechanism of fabrication of micro channels in fused silica substrates by laser-induced plasma. Acta Physica Sinica, 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [10] Lin Yuan-Yuan, Jiang You-En, Wei Hui, Fan Wei, Li Xue-Chun. Study on damage mitigation for dielectric mirrors by using femtosecond laser micromachining. Acta Physica Sinica, 2015, 64(15): 154207. doi: 10.7498/aps.64.154207
    [11] Wang Wen-Ting, Hu Bing, Wang Ming-Wei. Femtosecond laser fine machining of energetic materials. Acta Physica Sinica, 2013, 62(6): 060601. doi: 10.7498/aps.62.060601
    [12] Zhu Yuan-Qing, Qu Xing-Hua, Zhang Fu-Min, Tao Hui-Rong. Infrared laser scattering characteristics of machining surfaces. Acta Physica Sinica, 2013, 62(24): 244201. doi: 10.7498/aps.62.244201
    [13] Wang Rui, Yang Jian-Jun, Liang Chun-Yong, Wang Hong-Shui, Han Wei, Yang Yang. Femtosecond laser ablation of silicon wafers in air and water. Acta Physica Sinica, 2009, 58(8): 5429-5435. doi: 10.7498/aps.58.5429
    [14] Yu Ge, Yang Shen-Hua, Wang Meng, Kou Shu-Qing, Lin Bao-Jun, Lu Wan-Chun. Finite element analysis and experimental studies on fracture splitting processing by Nd: YAG laser ablation. Acta Physica Sinica, 2012, 61(9): 092801. doi: 10.7498/aps.61.092801
    [15] Zhang Zhao-Yang, Li Zhong-Yang, Qin Chang-Liang, Yin Jie, Zhang Chang-Tao, Mao Wei-Ping, Feng Qin-Yu. Analysis of stress-etching quality based on nanosecond pulse laser electrochemical machining. Acta Physica Sinica, 2013, 62(9): 094210. doi: 10.7498/aps.62.094210
    [16] Wang Cheng-Wei, Zhao Quan-Zhong, Qian Jing, Huang Yuan-Yuan, Wang Guan-De, Li Yang-Bo, Bai Feng, Fan Wen-Zhong, Li Hong-Jin. Measuring the internal temperature of dielectrics machined by the ultrashort laser pulse through the black-body irradiation method. Acta Physica Sinica, 2016, 65(12): 125201. doi: 10.7498/aps.65.125201
    [17] Zhang Guo-Wen, Lu Xing-Qiang, Cao Hua-Bao, Yin Xian-Hua, Lü Feng-Nian, Zhang Zhen, Li Jing-Hui, Wang Ren-Gui, Ma Wei-Xin, Zhu Jian. Diffraction effect of high-power laser beams through contamination particles. Acta Physica Sinica, 2012, 61(2): 024201. doi: 10.7498/aps.61.024201
    [18] Hu Xing-Lei, Sun Ya-Zhou, Liang Ying-Chun, Chen Jia-Xuan. Performance evolution process of machined surface of monocrystalline silicon micro/nanostructures. Acta Physica Sinica, 2013, 62(22): 220704. doi: 10.7498/aps.62.220704
    [19] Luo Ju, Feng Guo-Ying, Han Jing-Hua, Shen Xiong, Zhang Li-Jun, Ding Kun-Yan. Thermodynamics of laser plasma removal of micro and nano-particles. Acta Physica Sinica, 2020, 69(8): 084201. doi: 10.7498/aps.69.20191933
    [20] Zhu Jia-Jian, Du Wen-Bo, Zhou Pu, Xu Xiao-Jun, Liu Ze-Jin. Numerical study on power limit of single-mode fiber lasers. Acta Physica Sinica, 2012, 61(6): 064209. doi: 10.7498/aps.61.064209
  • Citation:
Metrics
  • Abstract views:  1371
  • PDF Downloads:  354
  • Cited By: 0
Publishing process
  • Received Date:  28 April 2017
  • Accepted Date:  31 May 2017
  • Published Online:  05 July 2017

The mechanisms and research progress of laser fabrication technologies beyond diffraction limit

    Corresponding author: Xu Jing-Jun, jjxu@nankai.edu.cn
  • 1. The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics, School of Physics, Nankai University, Tianjin 300457, China;
  • 2. College of Physics Science, Qingdao University, Qingdao 266071, China
Fund Project:  Project supported by the National Basic Research Program of China (Grant No. 2013CB328702), the National Natural Science Foundation of China (Grant No. 11674182), the Natural Science Foundation of Tianjin, China (Grant No. 17JCYBJC16700), the 111 Project, China (Grant No. B07013), the PCSIRT (Grant No. IRT_13R29), and the Collaborative Innovation Center of Extreme Optics of Shanxi University, China.

Abstract: Laser is recognized as one of the top technological achievements of 20th century and plays an important role in many fields, such as medicine, industry, entertainment and so on. Laser processing technology is one of the earliest and most developed applications of laser. With the rapid development of nanoscience and nanotechnology and micro/nano electronic devices, the micro/nanofabrication technologies become increasingly demanding in manufacturing industries. In order to realize low-cost, large-area and especially high-precision micro-nanofabrication, it has great scientific significance and application value to study and develop the laser fabrication technologies that can break the diffraction limit. In this article, the super resolution laser fabrication technologies are classified into two groups, far-filed laser direct writing technologies and near-field laser fabrication technologies. Firstly, the mechanisms and progress of several far-field laser direct writing technologies beyond the diffraction limit are summarized, which are attributed to the lasermatter nonlinear interaction. The super-diffraction laser ablation was achieved for the temperature-dependent reaction of materials with the Gaussian distribution laser, and the super-diffraction laser-induced oxidation in Metal-Transparent Metallic Oxide grayscale photomasks was realized by the laser-induced Cabrera-Mott oxidation process. Besides, the multi-photon polymerization techniques including degenerate/non-degenerate two-photon polymerization are introduced and the resolution beyond the diffraction limit was achieved based on the third-order nonlinear optical process. Moreover, the latest stimulated emission depletion technique used in the laser super-resolution fabrication is also introduced. Secondly, the mechanisms and recent advances of novel super diffraction near-field laser fabrication technologies based on the evanescent waves or surface plasmon polaritons are recommended. Scanning near-field lithography used a near-field scanning optical microscope coupled with a laser to create nanoscale structures with a resolution beyond 100 nm. Besides, near-field optical lithography beyond the diffraction limit could also be achieved through super resolution near-field structures, such as a bow-tie nanostructure. The interference by the surface plasmon polariton waves could lead to the fabrication of super diffraction interference fringe structures with a period smaller than 100 nm. Moreover, a femtosecond laser beam could also excite and interfere with surface plasmon polaritons to form laser-induced periodic surface structures. Furthermore, the super-resolution superlens and hyperlens imaging lithography are introduced. Evanescent waves could be amplified by using the superlens of metal film to improve the optical lithography resolution beyond the diffraction resolution. The unique anisotropic dispersion of hyperlens could provide the high wave vector component without the resonance relationship, which could also realize the super resolution imaging. Finally, prospective research and development tend of super diffraction laser fabrication technologies are presented. It is necessary to expand the range of materials which can be fabricated by laser beyond the diffraction limit, especially 2D materials.

Reference (105)

Catalog

    /

    返回文章
    返回