搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于飞秒激光纳米加工的TiO2粒子阵列诱导多种基底表面近场增强

焦悦 陶海岩 季博宇 宋晓伟 林景全

用于飞秒激光纳米加工的TiO2粒子阵列诱导多种基底表面近场增强

焦悦, 陶海岩, 季博宇, 宋晓伟, 林景全
PDF
导出引用
导出核心图
  • 利用纳米粒子辅助对飞秒激光能量进行空间局域化,使其在基底表面诱导产生纳米尺度的近场增强,这对超衍射极限微结构加工具有重要意义.目前对于粒子阵列诱导飞秒激光纳米孔加工的研究仅限于金属Au粒子及低折射率聚苯乙烯介电粒子等,本文提出并开展了应用高折射率TiO2介电粒子阵列作为辅助诱导激光近场增强从而进行飞秒激光超衍射纳米孔加工的研究.对TiO2介电粒子阵列在Si,Pt及SiO2表面的近场强度分布进行了数值模拟,研究其基底表面近场增强的规律及物理过程.研究结果发现,使用硅基底时,阵列与单一TiO2球形粒子相比其近场增强仅下降约30%;相对于入射激光强度而言,在直径约为100 nm的空间范围内获得140倍的近场增强,这一现象可用于百纳米孔的激光加工.同时在其他典型基底的理论计算结果中也表明,几乎在所有金属及介电材料表面均可以实现良好的百纳米空间范围内的近场增强,并且具有近场随着基底折射率变大而增强的规律.这些现象的产生归因于TiO2粒子中磁四极振荡产生的激光前向场增强及粒子与基底的耦合作用.进一步引入镜像电荷模型对基底光学参数对其表面近场增强的影响规律进行了分析和解释.本文的模拟结果对飞秒激光近场超衍射极限纳米加工的应用有着重要的意义.
    [1]

    Tao H, Song X, Hao Z, Lin J 2015 Chin. Opt. lett. 13 061402

    [2]

    Tao H, Lin J, Hao Z, Gao X, Song X, Sun C, Tan X 2012 Appl. Phys. Lett. 100 201111

    [3]

    Li G Q, Li X H, Yang H D, Qiu R, Huang W H 2011 Chin. Opt. 4 72 (in Chinese) [李国强, 李晓红, 杨宏道, 邱荣, 黄文浩 2011 中国光学 4 72]

    [4]

    Zenhausern F, Martin Y, Wickramasinghe H K 1995 Science 269 1083

    [5]

    Merlein J, Kahl M, Zuschlag A, Sell A, Halm A, Boneberg J, Leiderer P, Leitenstorfer A, Bratschitsch R 2008 Nature Photon. 2 230

    [6]

    Wang Z B, Luk'yanchuk B S, Li L, Crouse P L, Liu Z, Dearden G, Watkins K G 2007 Appl. Phys. A 89 363

    [7]

    Plech A, Kotaidis V, Lorenc M, Boneberg J 2006 Nature Phys. 2 44

    [8]

    Robitaille A, Boulais, Meunier M 2013 Opt. Express 21 9703

    [9]

    Nedyalkov N, Miyanishi T, Obara M 2007 Appl. Surf. Sci. 253 6558

    [10]

    Atanasov P A, Nedyalkov N N, Sakai T, Obara M 2007 Appl. Surf. Sci. 254 794

    [11]

    Nedyalkov N, Sakai T, Miyanishi T, Obara M 2007 Appl. Phys. Lett. 90 123106

    [12]

    Quan S, Kosei U, Han Y, Atsushi K, Yasutaka M, Hiroaki M 2013 Light Sci. Appl. 2 e118

    [13]

    Pearodrguez O, Pal U, Campoyquiles M, Rodrguezfernndez L, Garriga M, Alonso M I 2011 J. Phys. Chem. C 115 6410

    [14]

    Terakawa M, Takeda S, Tanaka Y, Obara G, Miyanishi T, Sakai T, Sumiyoshi T, Sekita H, Hasegawa M, Viktorovitch P, Obara M 2012 Prog. Quantum Electron 36 194

    [15]

    Afanasiev A, Bredikhin V, Pikulin A, Ilyakov I, Shishkin B, Akhmedzhanov R, Bityurin N 2015 Appl. Phys. Lett. 106 183102

    [16]

    Pikulin A, Afanasiev A, Agareva N, Alexandrov A P, Bredikhin V, Bityurin N 2012 Opt. Express 20 9052

    [17]

    Tanaka Y, Obara G, Zenidaka A, Terakawa M, Obara M 2010 Appl. Phys. Lett. 96 261103

    [18]

    Tanaka Y, Obara M 2009 Jpn. J. Appl. Phys. 48 122002

    [19]

    Taflove A, Hagness S C 2000 Computational Electrodynamics: The Finite-Difference Time-Domain Method (Boston: Artech House)

    [20]

    Palik E D 1998 Handbook of Optical Constants of Solids (Vol. 1) (San Diego, CA: Academic) p333

    [21]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [22]

    Messinger B J, Raben K U, Chang R K, Barber P W 1981 Phys. Rev. B 24 649

    [23]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)

  • [1]

    Tao H, Song X, Hao Z, Lin J 2015 Chin. Opt. lett. 13 061402

    [2]

    Tao H, Lin J, Hao Z, Gao X, Song X, Sun C, Tan X 2012 Appl. Phys. Lett. 100 201111

    [3]

    Li G Q, Li X H, Yang H D, Qiu R, Huang W H 2011 Chin. Opt. 4 72 (in Chinese) [李国强, 李晓红, 杨宏道, 邱荣, 黄文浩 2011 中国光学 4 72]

    [4]

    Zenhausern F, Martin Y, Wickramasinghe H K 1995 Science 269 1083

    [5]

    Merlein J, Kahl M, Zuschlag A, Sell A, Halm A, Boneberg J, Leiderer P, Leitenstorfer A, Bratschitsch R 2008 Nature Photon. 2 230

    [6]

    Wang Z B, Luk'yanchuk B S, Li L, Crouse P L, Liu Z, Dearden G, Watkins K G 2007 Appl. Phys. A 89 363

    [7]

    Plech A, Kotaidis V, Lorenc M, Boneberg J 2006 Nature Phys. 2 44

    [8]

    Robitaille A, Boulais, Meunier M 2013 Opt. Express 21 9703

    [9]

    Nedyalkov N, Miyanishi T, Obara M 2007 Appl. Surf. Sci. 253 6558

    [10]

    Atanasov P A, Nedyalkov N N, Sakai T, Obara M 2007 Appl. Surf. Sci. 254 794

    [11]

    Nedyalkov N, Sakai T, Miyanishi T, Obara M 2007 Appl. Phys. Lett. 90 123106

    [12]

    Quan S, Kosei U, Han Y, Atsushi K, Yasutaka M, Hiroaki M 2013 Light Sci. Appl. 2 e118

    [13]

    Pearodrguez O, Pal U, Campoyquiles M, Rodrguezfernndez L, Garriga M, Alonso M I 2011 J. Phys. Chem. C 115 6410

    [14]

    Terakawa M, Takeda S, Tanaka Y, Obara G, Miyanishi T, Sakai T, Sumiyoshi T, Sekita H, Hasegawa M, Viktorovitch P, Obara M 2012 Prog. Quantum Electron 36 194

    [15]

    Afanasiev A, Bredikhin V, Pikulin A, Ilyakov I, Shishkin B, Akhmedzhanov R, Bityurin N 2015 Appl. Phys. Lett. 106 183102

    [16]

    Pikulin A, Afanasiev A, Agareva N, Alexandrov A P, Bredikhin V, Bityurin N 2012 Opt. Express 20 9052

    [17]

    Tanaka Y, Obara G, Zenidaka A, Terakawa M, Obara M 2010 Appl. Phys. Lett. 96 261103

    [18]

    Tanaka Y, Obara M 2009 Jpn. J. Appl. Phys. 48 122002

    [19]

    Taflove A, Hagness S C 2000 Computational Electrodynamics: The Finite-Difference Time-Domain Method (Boston: Artech House)

    [20]

    Palik E D 1998 Handbook of Optical Constants of Solids (Vol. 1) (San Diego, CA: Academic) p333

    [21]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [22]

    Messinger B J, Raben K U, Chang R K, Barber P W 1981 Phys. Rev. B 24 649

    [23]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)

  • [1] 罗端, 惠丹丹, 温文龙, 李立立, 辛丽伟, 钟梓源, 吉超, 陈萍, 何凯, 王兴, 田进寿. 超紧凑型飞秒电子衍射仪的设计. 物理学报, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [2] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191989
    [3] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林景全. 气体压强对纳秒激光诱导空气等离子体特性的影响. 物理学报, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [4] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191923
    [5] 董正琼, 赵杭, 朱金龙, 石雅婷. 入射光照对典型光刻胶纳米结构的光学散射测量影响分析. 物理学报, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [6] 左富昌, 梅志武, 邓楼楼, 石永强, 贺盈波, 李连升, 周昊, 谢军, 张海力, 孙艳. 多层嵌套掠入射光学系统研制及在轨性能评价. 物理学报, 2020, 69(3): 030702. doi: 10.7498/aps.69.20191446
    [7] 胡耀华, 刘艳, 穆鸽, 秦齐, 谭中伟, 王目光, 延凤平. 基于多模光纤散斑的压缩感知在光学图像加密中的应用. 物理学报, 2020, 69(3): 034203. doi: 10.7498/aps.69.20191143
    [8] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测. 物理学报, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [9] 张雅男, 詹楠, 邓玲玲, 陈淑芬. 利用银纳米立方增强效率的多层溶液加工白光有机发光二极管. 物理学报, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [10] 庄志本, 李军, 刘静漪, 陈世强. 基于新的五维多环多翼超混沌系统的图像加密算法. 物理学报, 2020, 69(4): 040502. doi: 10.7498/aps.69.20191342
    [11] 吴雨明, 丁霄, 王任, 王秉中. 基于等效介质原理的宽角超材料吸波体的理论分析. 物理学报, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [12] 罗菊, 韩敬华. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191933
    [13] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [14] 周旭聪, 石尚, 李飞, 孟庆田, 王兵兵. 利用双色激光场下域上电离谱鉴别H32+ 两种不同分子构型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200013
    [15] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [16] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [17] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191896
    [18] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [19] 刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思. 快重离子辐照对YBa2Cu3O7-δ薄膜微观结构及载流特性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191914
    [20] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
  • 引用本文:
    Citation:
计量
  • 文章访问数:  266
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-20
  • 修回日期:  2017-03-11
  • 刊出日期:  2017-07-20

用于飞秒激光纳米加工的TiO2粒子阵列诱导多种基底表面近场增强

    基金项目: 

    国家自然科学基金(批准号:61605017)和长春理工大学青年科学基金(批准号:XQNJJ-2015-01)资助的课题.

摘要: 利用纳米粒子辅助对飞秒激光能量进行空间局域化,使其在基底表面诱导产生纳米尺度的近场增强,这对超衍射极限微结构加工具有重要意义.目前对于粒子阵列诱导飞秒激光纳米孔加工的研究仅限于金属Au粒子及低折射率聚苯乙烯介电粒子等,本文提出并开展了应用高折射率TiO2介电粒子阵列作为辅助诱导激光近场增强从而进行飞秒激光超衍射纳米孔加工的研究.对TiO2介电粒子阵列在Si,Pt及SiO2表面的近场强度分布进行了数值模拟,研究其基底表面近场增强的规律及物理过程.研究结果发现,使用硅基底时,阵列与单一TiO2球形粒子相比其近场增强仅下降约30%;相对于入射激光强度而言,在直径约为100 nm的空间范围内获得140倍的近场增强,这一现象可用于百纳米孔的激光加工.同时在其他典型基底的理论计算结果中也表明,几乎在所有金属及介电材料表面均可以实现良好的百纳米空间范围内的近场增强,并且具有近场随着基底折射率变大而增强的规律.这些现象的产生归因于TiO2粒子中磁四极振荡产生的激光前向场增强及粒子与基底的耦合作用.进一步引入镜像电荷模型对基底光学参数对其表面近场增强的影响规律进行了分析和解释.本文的模拟结果对飞秒激光近场超衍射极限纳米加工的应用有着重要的意义.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回