Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical transparency radial distribution of ion thruster

Long Jian-Fei Zhang Tian-Ping Li Juan Jia Yan-Hui

Optical transparency radial distribution of ion thruster

Long Jian-Fei, Zhang Tian-Ping, Li Juan, Jia Yan-Hui
PDF
Get Citation
  • The optical system is one of the main components of an ion thruster, which consists of electrically biased multi-aperture grids. The grid design is critical to the ion thruster operation since its transparency has an important influence on the thruster efficiency and thrust. To further optimize the optical system performance and evaluate effectively the efficiency of ion thruster, the optical transparency radial distribution of ion thruster is analyzed and discussed in experiment and simulation. The process of beam extraction is simulated by the particleincell-Monte Carlo collision (PIC-MCC) method, and the movement of the ions is investigated by the PIC method while the collisions of particles are handled by the MCC method. Then the interdependency among the transparency of screen grid, the accelerator grid, optics system and the number of ion extracted is analyzed. Taking into account the distribution of ion density at the exit of discharge chamber, the radial distribution of the screen grid transparency, accelerator grid transparency and optical system transparency are acquired. An experiment is performed to verify the simulation based derivation, indicating the good agreement between experimental and simulation results. The results show that the radial distribution of screen grid transparency increases gradually along the radial direction and has a good central axial symmetry, and its minimum value is located in the center of the thruster while the maximum value is near the margin region of screen gird. The radial distribution of accelerator grid transparency is opposite to that of the screen grid transparency, which decreases along the radial direction, and its maximum value is located at the axis of the thruster. The radial distribution of optical system transparency is the same as that of the screen grid transparency. And its minimum value is in the center of optics system, which indicates that the effect of accelerator grid transparency on the optical system transparency is little. In addition, the study also finds that the total optical transparency of ion thruster decreases slowly as the beam current increases. This work will provide a lot of support for the optimal design of ion thruster optics system.
      Corresponding author: Long Jian-Fei, ljf510@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61601210), the National Basic Research Project of China (Grant No. 61× × 34), and the Key Laboratory Fund (Grant No. 9140C550206130C55003).
    [1]

    Porst J P, Kuhmann J, Kukies R, Leiter H 2015 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe Japan, July 4-10, 2015 p2015-b-2901

    [2]

    Hutchins M, Simpson H, Palencia Jiménez J 2015 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium Hyogo-Kobe, Japan, July 4-10, 2015 p2015-b-1311

    [3]

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901(in Chinese)[陈茂林, 夏广庆, 毛根旺2014物理学报 63 182901]

    [4]

    Zhang T P, Wang X Y, Jiang H C 2013 Presented at the 33th International Electric Propulsion Conference Washington, USA, 2013 p2013-48-1

    [5]

    Chen J J, Zhang T P, Jia Y H, Li X P 2012 High Power Laser and Particle Beams 24 2469(in Chinese)[陈娟娟, 张天平, 贾艳辉, 李小平2012强激光与粒子束流24 2469]

    [6]

    Zhou Z C, Wang M, Zhong X Q, Chen J J, Zhang T P 2015 Chin. J. Vacuum Sci. Technol. 35 1088(in Chinese)[周志成, 王敏, 仲小清, 陈娟娟, 张天平2015真空科学与技术学报35 1088]

    [7]

    Kaufman H R 1999 Plasma Sources Sci. Technol. 8 R1

    [8]

    Brophy J R 1990 Presented at the 21th International Electric Propulsion Conference California, USA, 1990 p90-2655-1

    [9]

    Arakawa Y, Nakano M 1996 Presented at the 32nd Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences Vista, USA, 1996 p96-3198-1

    [10]

    Wirz R, Goebel D M 2008 Plasma Sources Sci. Technol. 17 035010

    [11]

    Haag T, Soulas G C 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, Indiana, 2002 p2003-4557-1

    [12]

    Anderson J, Goodfellow K, Polk J, Shotwell R, Rawlin V, Sovey J, Patterson M 1999 Presented at the 35th Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences California USA, 1999 p99-2857-1

    [13]

    Chen M L, Xia G Q, Yang Z Y, Zhang B, Xu Z Q, Mao G W 2014 High Voltage Engineering 40 3012(in Chinese)[陈茂林, 夏广庆, 杨正岩, 张斌, 徐宗琦, 毛根旺2014高电压技术40 3012]

    [14]

    Li J, Chu Y C, Cao Y 2012 J. Propul. Technol. 33 131(in Chinese)[李娟, 楚豫川, 曹勇2012推进技术33 131]

    [15]

    Wang M, Gu Z, Xu J L 2013 Vacuum&Cryogenics 19 95(in Chinese)[王蒙, 顾左, 徐金灵2013真空与低温19 95]

    [16]

    Zhong L W, Liu Y, Li J, Gu Z, Jiang H C, Wang H X, Tang H B 2010 Chin. J. Aeronaut. 23 15

    [17]

    Hu W P, Sang C F, Tang T F, Wang D Z, Li M, Jin D Z, Tan X H 2014 Phys. Plasmas 21 033510

    [18]

    Liu H, Wu B, Yu D, Cao Y, Duan P 2010 J. Phys. D:Appl. Phys. 43 165202

    [19]

    Boer P 1997 J. Propul. Power 13 783

    [20]

    Wang J, Polk J, Brophy J, Katz J 2003 J. Propul. Power 19 1192

    [21]

    Herman D A, Gallimore A D 2013 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences Florida USA 2013 p2004-3794-1

    [22]

    Zheng M F, Jiang H C 2011 J. Propul. Technol. 32 762(in Chinese)[郑茂繁, 江豪成2011推进技术32 762]

    [23]

    Farnell C C, Williams J D 2010 J. Propul. Power 26 125

  • [1]

    Porst J P, Kuhmann J, Kukies R, Leiter H 2015 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe Japan, July 4-10, 2015 p2015-b-2901

    [2]

    Hutchins M, Simpson H, Palencia Jiménez J 2015 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium Hyogo-Kobe, Japan, July 4-10, 2015 p2015-b-1311

    [3]

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901(in Chinese)[陈茂林, 夏广庆, 毛根旺2014物理学报 63 182901]

    [4]

    Zhang T P, Wang X Y, Jiang H C 2013 Presented at the 33th International Electric Propulsion Conference Washington, USA, 2013 p2013-48-1

    [5]

    Chen J J, Zhang T P, Jia Y H, Li X P 2012 High Power Laser and Particle Beams 24 2469(in Chinese)[陈娟娟, 张天平, 贾艳辉, 李小平2012强激光与粒子束流24 2469]

    [6]

    Zhou Z C, Wang M, Zhong X Q, Chen J J, Zhang T P 2015 Chin. J. Vacuum Sci. Technol. 35 1088(in Chinese)[周志成, 王敏, 仲小清, 陈娟娟, 张天平2015真空科学与技术学报35 1088]

    [7]

    Kaufman H R 1999 Plasma Sources Sci. Technol. 8 R1

    [8]

    Brophy J R 1990 Presented at the 21th International Electric Propulsion Conference California, USA, 1990 p90-2655-1

    [9]

    Arakawa Y, Nakano M 1996 Presented at the 32nd Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences Vista, USA, 1996 p96-3198-1

    [10]

    Wirz R, Goebel D M 2008 Plasma Sources Sci. Technol. 17 035010

    [11]

    Haag T, Soulas G C 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, Indiana, 2002 p2003-4557-1

    [12]

    Anderson J, Goodfellow K, Polk J, Shotwell R, Rawlin V, Sovey J, Patterson M 1999 Presented at the 35th Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences California USA, 1999 p99-2857-1

    [13]

    Chen M L, Xia G Q, Yang Z Y, Zhang B, Xu Z Q, Mao G W 2014 High Voltage Engineering 40 3012(in Chinese)[陈茂林, 夏广庆, 杨正岩, 张斌, 徐宗琦, 毛根旺2014高电压技术40 3012]

    [14]

    Li J, Chu Y C, Cao Y 2012 J. Propul. Technol. 33 131(in Chinese)[李娟, 楚豫川, 曹勇2012推进技术33 131]

    [15]

    Wang M, Gu Z, Xu J L 2013 Vacuum&Cryogenics 19 95(in Chinese)[王蒙, 顾左, 徐金灵2013真空与低温19 95]

    [16]

    Zhong L W, Liu Y, Li J, Gu Z, Jiang H C, Wang H X, Tang H B 2010 Chin. J. Aeronaut. 23 15

    [17]

    Hu W P, Sang C F, Tang T F, Wang D Z, Li M, Jin D Z, Tan X H 2014 Phys. Plasmas 21 033510

    [18]

    Liu H, Wu B, Yu D, Cao Y, Duan P 2010 J. Phys. D:Appl. Phys. 43 165202

    [19]

    Boer P 1997 J. Propul. Power 13 783

    [20]

    Wang J, Polk J, Brophy J, Katz J 2003 J. Propul. Power 19 1192

    [21]

    Herman D A, Gallimore A D 2013 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences Florida USA 2013 p2004-3794-1

    [22]

    Zheng M F, Jiang H C 2011 J. Propul. Technol. 32 762(in Chinese)[郑茂繁, 江豪成2011推进技术32 762]

    [23]

    Farnell C C, Williams J D 2010 J. Propul. Power 26 125

  • [1] Chen Mao-Lin, Xia Guang-Qing, Mao Gen-Wang. Three-dimensional particle in cell simulation of multi-mode ion thruster optics system. Acta Physica Sinica, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [2] Chen Mao-Lin, Xia Guang-Qing, Xu Zong-Qi, Mao Gen-Wang. Analysis on the effects of optics thermal deformation on the ion thruster operation. Acta Physica Sinica, 2015, 64(9): 094104. doi: 10.7498/aps.64.094104
    [3] Li Yao, Su Tong, Lei Fan, Xu Neng, Sheng Li-Zhi, Zhao Bao-Sheng. X-ray transmission characteristics and potential communication application in plasma region. Acta Physica Sinica, 2019, 68(4): 040401. doi: 10.7498/aps.68.20181973
    [4] Chen Zhao-Quan, Yin Zhi-Xiang, Chen Ming-Gong, Liu Ming-Hai, Xu Gong-Lin, Hu Ye-Lin, Xia Guang-Qing, Song Xiao, Jia Xiao-Fen, Hu Xi-Wei. Particle-in-cell simulation on surface-wave discharge process influenced by gas pressure and negative-biased voltage along ion sheath layer. Acta Physica Sinica, 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [5] Long Jian-Fei, Zhang Tian-Ping, Yang Wei, Sun Ming-Ming, Jia Yan-Hui, Liu Ming-Zheng. Thrust density characteristics of ion thruster. Acta Physica Sinica, 2018, 67(2): 022901. doi: 10.7498/aps.67.20171507
    [6] Zhuo Hong-Bin, Hu Qing-Feng, Liu Jie, Chi Li-Hua, Zhang Wen-Yong. Quasi-static particle simulation of short pulse laser-plasma interaction. Acta Physica Sinica, 2005, 54(1): 197-201. doi: 10.7498/aps.54.197
    [7] Jian Guang-De, Dong Jia-Qi. Particle simulation method for the electron temperature gradient instability in toroidal plasmas. Acta Physica Sinica, 2003, 52(7): 1656-1662. doi: 10.7498/aps.52.1656
    [8] Yang Chao, Liu Da-Gang, Zhou Jun, Liao Chen, Peng Kai, Liu Sheng-Gang. Three-dimensional particle-in-cell simulation studies on a new radial three-cavity coaxial virtual cathode oscillator. Acta Physica Sinica, 2011, 60(8): 084102. doi: 10.7498/aps.60.084102
    [9] Chen Zhao-Quan, Xia Guang-Qing, Liu Ming-Hai, Zheng Xiao-Liang, Hu Ye-Lin, Li Ping, Xu Gong-Lin, Hong Ling-Li, Shen Hao-Yu, Hu Xi-Wei. PIC/MCC simulation of the ionization process of SWP influenced by gas pressure and SPP. Acta Physica Sinica, 2013, 62(19): 195204. doi: 10.7498/aps.62.195204
    [10] Liu Lei, Li Yong-Dong, Wang Rui, Cui Wan-Zhao, Liu Chun-Liang. Particle-in-cell simulation of corona discharge in low pressure in stepped impedance transformer. Acta Physica Sinica, 2013, 62(2): 025201. doi: 10.7498/aps.62.025201
    [11] Wang Cheng-Zhen, Dong Quan-Li, Liu Ping, Wu Yi-Ying, Sheng Zheng-Ming, Zhang Jie. Particle simulation study on anisotropic pressure of electrons in laser-produced plasma interaction. Acta Physica Sinica, 2017, 66(11): 115203. doi: 10.7498/aps.66.115203
    [12] Zhang Jing, Zhang Yun-Dong, Zhang Xue-Nan, Yu Bo, Wang Jin-Fang, Wang Nan, Tian He, Yuan Ping. Characteristics of subluminal for optical resonators. Acta Physica Sinica, 2011, 60(2): 024218. doi: 10.7498/aps.60.024218
    [13] Gong Hua-Rong, Gong Yu-Bin, Wei Yan-Yu, Xue Dong-Hai, Wang Wen-Xiang, Tang Chang-Jian. Analysis of ion noise with beam-wave interaction in klystron by two dimensional particle simulation method. Acta Physica Sinica, 2006, 55(10): 5368-5374. doi: 10.7498/aps.55.5368
    [14] Wang Yu, Chen Zai-Gao, Lei Yi-An. Simulation of 0.14 THz relativistic backward-wave oscillator filled with plasma. Acta Physica Sinica, 2013, 62(12): 125204. doi: 10.7498/aps.62.125204
    [15] Wu Fu-Quan, Zhang Chun-Min, Liu Ning. Analysis and calculation of Glan-Taylor prism’s transmittance at full angle of view in a polarization interference imaging spectrometer. Acta Physica Sinica, 2010, 59(2): 949-957. doi: 10.7498/aps.59.949
    [16] Yang Chao, Liu Da-Gang, Wang Xiao-Ming, Liu La-Qun, Wang Xue-Qiong, Liu Sheng-Gang. A three-dimensional particle-in-cell/Monte Carlo computer simulation based on negative hydrogen ion source. Acta Physica Sinica, 2012, 61(4): 045204. doi: 10.7498/aps.61.045204
    [17] Zou Chang-Lin, Ye Wen-Hua, Lu Xin-Pei. Study of laser plasma interactions using one-dimensional particle-in-cell code in kinetic regime. Acta Physica Sinica, 2014, 63(8): 085207. doi: 10.7498/aps.63.085207
    [18] Sun Zhen-Yue, Sang Chao-Feng, Hu Wan-Peng, Wang De-Zhen. Simulation of erosion of the tungsten wall by impurities in the divertor plasma. Acta Physica Sinica, 2014, 63(14): 145204. doi: 10.7498/aps.63.145204
    [19] Tan Bin, Li Zhi-Yong, Li Shi-Chen. Study of pulse transmission properties in nonlinear optical loop mirror. Acta Physica Sinica, 2004, 53(9): 3071-3076. doi: 10.7498/aps.53.3071
    [20] Chen Hong-Yi, Guo Hong-Lian, Ni Pei-Gen, Zhang Qi, Cheng Bing-Ying, Zhang Dao-Zhong. The abnormal transmittance of polystyrene photonic crystals. Acta Physica Sinica, 2003, 52(9): 2155-2158. doi: 10.7498/aps.52.2155
  • Citation:
Metrics
  • Abstract views:  186
  • PDF Downloads:  103
  • Cited By: 0
Publishing process
  • Received Date:  18 March 2017
  • Accepted Date:  08 June 2017
  • Published Online:  20 August 2017

Optical transparency radial distribution of ion thruster

    Corresponding author: Long Jian-Fei, ljf510@163.com
  • 1. Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 61601210), the National Basic Research Project of China (Grant No. 61× × 34), and the Key Laboratory Fund (Grant No. 9140C550206130C55003).

Abstract: The optical system is one of the main components of an ion thruster, which consists of electrically biased multi-aperture grids. The grid design is critical to the ion thruster operation since its transparency has an important influence on the thruster efficiency and thrust. To further optimize the optical system performance and evaluate effectively the efficiency of ion thruster, the optical transparency radial distribution of ion thruster is analyzed and discussed in experiment and simulation. The process of beam extraction is simulated by the particleincell-Monte Carlo collision (PIC-MCC) method, and the movement of the ions is investigated by the PIC method while the collisions of particles are handled by the MCC method. Then the interdependency among the transparency of screen grid, the accelerator grid, optics system and the number of ion extracted is analyzed. Taking into account the distribution of ion density at the exit of discharge chamber, the radial distribution of the screen grid transparency, accelerator grid transparency and optical system transparency are acquired. An experiment is performed to verify the simulation based derivation, indicating the good agreement between experimental and simulation results. The results show that the radial distribution of screen grid transparency increases gradually along the radial direction and has a good central axial symmetry, and its minimum value is located in the center of the thruster while the maximum value is near the margin region of screen gird. The radial distribution of accelerator grid transparency is opposite to that of the screen grid transparency, which decreases along the radial direction, and its maximum value is located at the axis of the thruster. The radial distribution of optical system transparency is the same as that of the screen grid transparency. And its minimum value is in the center of optics system, which indicates that the effect of accelerator grid transparency on the optical system transparency is little. In addition, the study also finds that the total optical transparency of ion thruster decreases slowly as the beam current increases. This work will provide a lot of support for the optimal design of ion thruster optics system.

Reference (23)

Catalog

    /

    返回文章
    返回