Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and performance test of discharge chamber and grid for multi-mode ion thrusters

Li Jian-Peng Zhao Yi-De Jin Wu-Yin Zhang Xing-Min Li Juan Wang Yan-Long

Citation:

Design and performance test of discharge chamber and grid for multi-mode ion thrusters

Li Jian-Peng, Zhao Yi-De, Jin Wu-Yin, Zhang Xing-Min, Li Juan, Wang Yan-Long
PDF
HTML
Get Citation
  • In view of the application requirements of electric propulsion system for China’s asteroid deep space exploration mission, the overall scheme is designed, an ion thruster prototype model is established by using a four-ring-cusp field discharge chamber, 30-cm beam current extraction diameter three-grid ion optics system. Reasonableness and compatibility of discharge chamber and grid design are verified experimentally and theoretically . The test results are shown below. The ion thruster can operate steadily over an input power envelope of 277–3120 W, thrust increases linearly from 9.9 to 117.2 mN, specific impulse rises from 1269 to 3492 s, the beam divergence angle drops from 30.7° to 26.8° and stabilizes above a certain power value, the thrust vector angle is less than 1.5° and beam flatness parameter is greater than 0.75 at different operating points. The maximum percentage reduction in grid gap aberration is 90% with the strain relief molybdenum mounting ring thermal design. This research provides a reference for multi-mode ion thruster design and in-orbit engineering applications.
      Corresponding author: Jin Wu-Yin, 1171341698@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61601210), the Gansu Province Young Science and Technology Talents Support Project(Grant No. 22JR5RA789), the Science and Technology Program of Gansu Province, China (Grant No. 21JR7RA744), and the Fund for Distinguished Young Scholars of China Academy of Space Technology.
    [1]

    Burak K K, Deborah A L 2017 J. Propul. Power 33 264Google Scholar

    [2]

    Li J X, Wang Z H, Zhang Y B, Fu H M, Liu C R, Krishnaswamy S 2016 J. Propul. Power 32 948Google Scholar

    [3]

    李建鹏, 靳伍银, 赵以德 2022 物理学报 71 015202

    Li J P, Jin W Y, Zhao Y D 2022 Acta Phys. Sin. 71 015202

    [4]

    Brophy J R, Mareucei M G, Ganapathi C B, Garner C E, Henry M D, Nakazono B, Noon D 2003 Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Huntsville, USA, July 20–23, 2003 p2003-4542-1

    [5]

    Rayman M D, Varghese P, Lehman D H, Livesay L 2000 Acta Astronaut 47 475Google Scholar

    [6]

    Garner C E, Rayman M D, Brophy J R, Mikes S C 2011 Presented at the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, USA, July 31−August 03, 2011 p2011-5661-1

    [7]

    Malone S P, Soulas G C 2004 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11–14, 2004 p2004-3784-1

    [8]

    Herman D A , Soulas G C , Patterson M J 2007 Presented at the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Cincinnati, USA, July 08–11, 2007 p2007-5212-1

    [9]

    Goebel D M, Martinez-Lavin M, Bond T A, King M 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7–10, 2002 p2002-4348-1

    [10]

    Snyder J S, Goebel D M, Hofer R R, Polk J E 2012 J. Propul. Power 28 371Google Scholar

    [11]

    Jahn R G, Von J W 2006 Physics of Electric Propulsion (New York: Dover Pubns) p68

    [12]

    Farnell C C, Williams J D 2011 Plasma Sources Sci. Technol 20 025006Google Scholar

    [13]

    Bittencourt J A 1980 Fundamentals of Plasma Physics (New York: Springer) p95

    [14]

    Piel A, Brown M 2011 Phys. Today 64 55

    [15]

    Brophy J R, Wilbur P J 1985 AIAA J 23 1731Google Scholar

    [16]

    Arakawa Y, Wilbur P J 1991 J. Propul. Power 7 125Google Scholar

    [17]

    Mahalingam S, Menart J A 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7–10, 2002 p2002-4262-1

    [18]

    Wang J, Polk J, Brophy J, Katz I 2003 J. Propul. Power 19 1192Google Scholar

    [19]

    陈茂林, 夏广庆, 毛根旺 2014 物理学报 63 182901

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901

    [20]

    龙建飞, 张天平, 李娟, 贾艳辉 2017 物理学报 66 162901

    Long J F, Zhang T P, Li J, Jia Y H 2017 Acta Phys. Sin. 66 162901

    [21]

    Wirz R, Goebel D M 2008 Plasma Sources Sci. Technol 17 035010Google Scholar

    [22]

    Zhang T P, Wang X Y, Jiang H C 2013 Presented at the 33th International Electric Propulsion Conference Washington, USA, October 6–10, 2013 p2013-48-1

    [23]

    赵以德, 李娟, 吴宗海, 黄永杰, 李建鹏, 张天平 2020 物理学报 69 115203

    Zhao Y D, Li J, Wu Z H, Huang Y J, Li J P, Zhang T P 2020 Acta Phys. Sin. 69 115203

    [24]

    李建鹏, 张天平, 赵以德, 李娟, 郭德洲, 胡竟 2021 推进技术 42 1435

    Li J P, Zhang T P, ZhaoY D, Li J, Guo D Z, Hu J 2021 J. Propul. Technol. 42 1435

    [25]

    李建鹏, 靳伍银, 赵以德 2022 物理学报 71 075203

    Li J P, Jin W Y, Zhao Y D 2022 Acta Phys. Sin. 71 075203

    [26]

    Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion: Ion and Hall Thruster (Hoboken: John Wiley and Sons) p115

    [27]

    张天平, 杨福全, 李娟 2020 离子电推进技术 (上海: 科学出版社) 第91页

    Zhang T P, Yang F Q, Li J 2020 Technology of ion electric propulsion (Shanghai: Science Press) p91 (in Chinese)

  • 图 1  四极环形磁铁会切场示意图

    Figure 1.  Schematic diagram of ring magnets cusp field.

    图 2  四极会切磁场多极边界剖面图, 包括磁力线及磁场等值线分布

    Figure 2.  Cross section (side) view of a four-ring-cusp magnetic multipole boundary showing the magnetic field lines and examples of contours of constant magnetic field.

    图 3  放电室磁感应强度等值线

    Figure 3.  Magnetic field contours in the ion thruster discharge chamber.

    图 4  变孔径屏栅示意图

    Figure 4.  Diagram of the variable aperture screen grid.

    图 5  改进前后栅极边缘变形情况对比 (a) 无应力释放钛安装环; (b) 应力释放钼安装环

    Figure 5.  Comparison of grid edge deformation before and after improvement: (a) Ti mounting ring without strain relief; (b) Mo mounting ring with strain relief.

    图 6  离子推力器原理样机

    Figure 6.  Ion thruster prototype model.

    图 7  离子推力器点火照片

    Figure 7.  Discharge of the ion thruster.

    图 8  试验组成图

    Figure 8.  Schematic diagram of experimental principle.

    图 9  离子束电流随功率变化曲线

    Figure 9.  Ion beam current as a function of input power.

    图 10  推力、比冲随功率变化曲线

    Figure 10.  Thrust, specific impulse as a function of input power

    图 11  不同测量点屏栅-加速栅间距 (a) 优化前; (b) 优化后

    Figure 11.  Screen grid-acceleration grid spacing at different measurement position: (a) Before optimization; (b) after optimization.

    图 12  不同测量点加速栅-减速栅间距 (a) 优化前; (b) 优化后

    Figure 12.  Accelerator-decelerator spacing at different measurement position: (a) Before optimization; (b) after optimization

    图 13  推力器不同工作点下的束流发散角和矢量偏角

    Figure 13.  Beam divergence angle and thrust vector angle at different operating points.

    图 14  栅极热稳定设计优化前后束流密度分布

    Figure 14.  Radial beam current density profile before and after optimization of grid thermal stabilization design.

    图 15  推力器不同工作点下的束流密度分布

    Figure 15.  Radial beam current density profile at different operating points.

    表 1  离子推力器放电室设计参数

    Table 1.  Design parameters of the ion thruster discharge chamber.

    几何构型直段 + 锥段阳极筒
    放电室口径和栅极直径比1—1.2
    长径比0.4—1
    磁极数4
    无量纲后磁极间距离0.6—0.85
    闭合磁等势线/Gs50—60
    磁体体积宽度比/cm20.4—0.8
    永磁体剩磁/Gs≥9500
    永磁体矫顽力/(kA·m–1)≥700
    DownLoad: CSV

    表 2  离子光学系统屏栅变孔径分区及归一化后参数

    Table 2.  Normalized parameters for screen grids with variable aperture zones.

    分区分区范围孔径
    0—OA0—31
    OA—OB3—51.05
    OB—OC5—121
    OC—OD12—150.94
    DownLoad: CSV

    表 3  离子光学系统设计参数

    Table 3.  Design parameters of the ion optical system for ion thrusters.

    参数名称参数指标
    栅极材料Mo
    栅极直径/cm30
    束流直径/cm28.6
    屏栅加速栅厚度比1∶1.1
    加速栅减速栅厚度比1∶1.1
    屏栅加速栅孔径比3∶2
    屏栅减速栅孔径比9∶8
    栅间距1
    屏栅加速栅透明度比1.45
    屏栅减速栅透明度比2.52
    DownLoad: CSV

    表 4  优化前后栅极稳定化处理后栅间距变化量

    Table 4.  Variation in grid gap with stabilization before and after optimization.

    四周变化
    量/mm
    中心变化
    量/mm
    四周极
    差/mm
    中心极
    差/mm
    屏栅-加速优化前0.2280.2350.1000.330
    优化后0.1310.1650.0100.180
    加速-减速优化前0.2060.1660.2900.290
    优化后0.0210.0600.0750.115
    DownLoad: CSV
  • [1]

    Burak K K, Deborah A L 2017 J. Propul. Power 33 264Google Scholar

    [2]

    Li J X, Wang Z H, Zhang Y B, Fu H M, Liu C R, Krishnaswamy S 2016 J. Propul. Power 32 948Google Scholar

    [3]

    李建鹏, 靳伍银, 赵以德 2022 物理学报 71 015202

    Li J P, Jin W Y, Zhao Y D 2022 Acta Phys. Sin. 71 015202

    [4]

    Brophy J R, Mareucei M G, Ganapathi C B, Garner C E, Henry M D, Nakazono B, Noon D 2003 Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Huntsville, USA, July 20–23, 2003 p2003-4542-1

    [5]

    Rayman M D, Varghese P, Lehman D H, Livesay L 2000 Acta Astronaut 47 475Google Scholar

    [6]

    Garner C E, Rayman M D, Brophy J R, Mikes S C 2011 Presented at the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, USA, July 31−August 03, 2011 p2011-5661-1

    [7]

    Malone S P, Soulas G C 2004 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11–14, 2004 p2004-3784-1

    [8]

    Herman D A , Soulas G C , Patterson M J 2007 Presented at the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Cincinnati, USA, July 08–11, 2007 p2007-5212-1

    [9]

    Goebel D M, Martinez-Lavin M, Bond T A, King M 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7–10, 2002 p2002-4348-1

    [10]

    Snyder J S, Goebel D M, Hofer R R, Polk J E 2012 J. Propul. Power 28 371Google Scholar

    [11]

    Jahn R G, Von J W 2006 Physics of Electric Propulsion (New York: Dover Pubns) p68

    [12]

    Farnell C C, Williams J D 2011 Plasma Sources Sci. Technol 20 025006Google Scholar

    [13]

    Bittencourt J A 1980 Fundamentals of Plasma Physics (New York: Springer) p95

    [14]

    Piel A, Brown M 2011 Phys. Today 64 55

    [15]

    Brophy J R, Wilbur P J 1985 AIAA J 23 1731Google Scholar

    [16]

    Arakawa Y, Wilbur P J 1991 J. Propul. Power 7 125Google Scholar

    [17]

    Mahalingam S, Menart J A 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7–10, 2002 p2002-4262-1

    [18]

    Wang J, Polk J, Brophy J, Katz I 2003 J. Propul. Power 19 1192Google Scholar

    [19]

    陈茂林, 夏广庆, 毛根旺 2014 物理学报 63 182901

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901

    [20]

    龙建飞, 张天平, 李娟, 贾艳辉 2017 物理学报 66 162901

    Long J F, Zhang T P, Li J, Jia Y H 2017 Acta Phys. Sin. 66 162901

    [21]

    Wirz R, Goebel D M 2008 Plasma Sources Sci. Technol 17 035010Google Scholar

    [22]

    Zhang T P, Wang X Y, Jiang H C 2013 Presented at the 33th International Electric Propulsion Conference Washington, USA, October 6–10, 2013 p2013-48-1

    [23]

    赵以德, 李娟, 吴宗海, 黄永杰, 李建鹏, 张天平 2020 物理学报 69 115203

    Zhao Y D, Li J, Wu Z H, Huang Y J, Li J P, Zhang T P 2020 Acta Phys. Sin. 69 115203

    [24]

    李建鹏, 张天平, 赵以德, 李娟, 郭德洲, 胡竟 2021 推进技术 42 1435

    Li J P, Zhang T P, ZhaoY D, Li J, Guo D Z, Hu J 2021 J. Propul. Technol. 42 1435

    [25]

    李建鹏, 靳伍银, 赵以德 2022 物理学报 71 075203

    Li J P, Jin W Y, Zhao Y D 2022 Acta Phys. Sin. 71 075203

    [26]

    Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion: Ion and Hall Thruster (Hoboken: John Wiley and Sons) p115

    [27]

    张天平, 杨福全, 李娟 2020 离子电推进技术 (上海: 科学出版社) 第91页

    Zhang T P, Yang F Q, Li J 2020 Technology of ion electric propulsion (Shanghai: Science Press) p91 (in Chinese)

  • [1] Fu Yu-Liang, Zhang Si-Yuan, Yang Jin-Yuan, Sun An-Bang, Wang Ya-Nan. Electron heating mode in magnetic field diffusion region of microwave discharge ion thruster. Acta Physica Sinica, 2024, 73(9): 095203. doi: 10.7498/aps.73.20240017
    [2] Tan Ren-Wei, Yang Juan, Geng Hai, Wu Xian-Ming, Mou Hao. Experimental study on 10-cm ECRIT neutralizer with nitrogen gas. Acta Physica Sinica, 2023, 72(4): 045202. doi: 10.7498/aps.72.20221951
    [3] Fu Yu-Liang, Yang Juan, Xia Xu, Sun An-Bang. Study on the effect of discharge chamber length on the performance of electron cyclotron resonance ion thruster. Acta Physica Sinica, 2023, 72(17): 175204. doi: 10.7498/aps.72.20230719
    [4] Li Jian-Peng, Jin Wu-Yin, Zhao Yi-De. Influence of acceleration grid voltage and anode flow rate on performance of ion thruster. Acta Physica Sinica, 2022, 71(1): 015202. doi: 10.7498/aps.71.20211316
    [5] Feng Yan-Hui, Feng Dai-Li, Chu Fu-Qiang, Qiu Lin, Sun Fang-Yuan, Lin Lin, Zhang Xin-Xin. Thermal design frontiers of nano-assembled phase change materials for heat storage. Acta Physica Sinica, 2022, 71(1): 016501. doi: 10.7498/aps.71.20211776
    [6] Li Jian-Peng, Jin Wu-Yin, Zhao Yi-De. Design of input parameters and operating characteristics for multi-mode ion thruster. Acta Physica Sinica, 2022, 71(7): 075203. doi: 10.7498/aps.71.20212045
    [7] Zhao Yi-De, Li Juan, Wu Zong-Hai, Huang Yong-Jie, Li Jian-Peng, Zhang Tian-Ping. Influence of screen gird aperture diameter in outer region on performance of dual-mode ion thruster. Acta Physica Sinica, 2020, 69(11): 115203. doi: 10.7498/aps.69.20200358
    [8] Xu Ping, Tang Shao-Tuo, Yuan Xia, Huang Hai-Xuan, Yang Tuo, Luo Tong-Zheng, Yu Jun. Design of an embedded tricolor-shifting device. Acta Physica Sinica, 2018, 67(2): 024202. doi: 10.7498/aps.67.20170782
    [9] Liu Hui, Jiang Wen-Jia, Ning Zhong-Xi, Cui Kai, Zeng Ming, Cao Xi-Feng, Yu Da-Ren. Cusped field thruster using different propellants. Acta Physica Sinica, 2018, 67(14): 145201. doi: 10.7498/aps.67.20180366
    [10] Long Jian-Fei, Zhang Tian-Ping, Yang Wei, Sun Ming-Ming, Jia Yan-Hui, Liu Ming-Zheng. Thrust density characteristics of ion thruster. Acta Physica Sinica, 2018, 67(2): 022901. doi: 10.7498/aps.67.20171507
    [11] Xia Ge, Yang Li, Kou Wei, Du Yong-Cheng. Design and research of three-dimensional thermal cloak with arbitrary shape based on the transformation thermodynamics. Acta Physica Sinica, 2017, 66(10): 104401. doi: 10.7498/aps.66.104401
    [12] Long Jian-Fei, Zhang Tian-Ping, Li Juan, Jia Yan-Hui. Optical transparency radial distribution of ion thruster. Acta Physica Sinica, 2017, 66(16): 162901. doi: 10.7498/aps.66.162901
    [13] Xia Mao-Peng, Li Jian-Jun, Gao Dong-Yang, Hu You-Bo, Sheng Wen-Yang, Pang Wei-Wei, Zheng Xiao-Bing. Absolute calibration of an analog InSb detector based on multimode spatial correlation of correlated photons. Acta Physica Sinica, 2015, 64(24): 240601. doi: 10.7498/aps.64.240601
    [14] Xu Min-Nan, Zhou Gui-Yao, Chen Cheng, Hou Zhi-Yun, Xia Chang-Ming, Zhou Gai, Liu Hong-Zhan, Liu Jian-Tao, Zhang Wei. Analysis of a novel four-mode micro-structured fiber with low-level crosstalk and high mode differential group delay. Acta Physica Sinica, 2015, 64(23): 234206. doi: 10.7498/aps.64.234206
    [15] Chen Mao-Lin, Xia Guang-Qing, Xu Zong-Qi, Mao Gen-Wang. Analysis on the effects of optics thermal deformation on the ion thruster operation. Acta Physica Sinica, 2015, 64(9): 094104. doi: 10.7498/aps.64.094104
    [16] Li Ting-Hua, Mao Fu-Chun, Huang Ming, Yang Jing-Jing, Chen Jun-Chang. Research and design of thermal concentrator with arbitrary shape based on transformation thermodynamics. Acta Physica Sinica, 2014, 63(5): 054401. doi: 10.7498/aps.63.054401
    [17] Chen Mao-Lin, Xia Guang-Qing, Mao Gen-Wang. Three-dimensional particle in cell simulation of multi-mode ion thruster optics system. Acta Physica Sinica, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [18] Wang Wei, Yang Lan-Jun, Gao Jie, Liu Shuai. Experimental study on the thrust and the ratio of thrust to power of multi-points/grid ionic wind exciter. Acta Physica Sinica, 2013, 62(7): 075205. doi: 10.7498/aps.62.075205
    [19] Yang Chao, Liu Da-Gang, Chen Ying, Xia Meng-Zhong, Wang Xue-Qiong, Wang Xiao-Min. 3D simulation optimization and design of multicusp ion source. Acta Physica Sinica, 2012, 61(13): 135203. doi: 10.7498/aps.61.135203
    [20] Yang Juan, Su Wei-Yi, Mao Gen-Wang, Xia Guang-Qing. Numerical simulation of the internal flow in microwave plasma thruster in magnetic field. Acta Physica Sinica, 2006, 55(12): 6494-6499. doi: 10.7498/aps.55.6494
Metrics
  • Abstract views:  2578
  • PDF Downloads:  50
  • Cited By: 0
Publishing process
  • Received Date:  17 April 2022
  • Accepted Date:  09 June 2022
  • Available Online:  27 September 2022
  • Published Online:  05 October 2022

/

返回文章
返回