Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Topological phase transitions caused by a simple rotational operation in two-dimensional acoustic crystals

Wang Jian Wu Shi-Qiao Mei Jun

Topological phase transitions caused by a simple rotational operation in two-dimensional acoustic crystals

Wang Jian, Wu Shi-Qiao, Mei Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We design a two-dimensional acoustic crystal (AC) to obtain topologically protected edge states for sound waves. The AC is composed of a triangular array of a complex unit cell consisting of two identical triangle-shaped steel rods arranged in air. The steel rods are placed on the vertices of the hexagonal unit cell so that the whole lattice possesses the C6v symmetry. We show that by simply rotating all triangular rods around their respective centers by 180 degrees, a topological phase transition can be achieved, and more importantly, such a transition is accomplished with no need of changing the fill ratios or changing the positions of the rods. Interestingly, the achieved topologically nontrivial band gap has a very large frequency width, which is really beneficial to future applications. The topological properties of the AC are rooted in the spatial symmetries of the eigenstates. It is well known that there are two doubly-degenerate eigenstates at the point for a C6v point group, and they are usually called the p and d states in electronic system. By utilizing the spatial symmetries of the p and d states in the AC, we can construct the pseudo-time reversal symmetry which renders the Kramers doubling in this classical system. We find pseudospin states in the interface between topologically trivial and nontrivial ACs, where anticlockwise (clockwise) rotational behaviors of time-averaged Poynting vectors correspond to the pseudospin-up (pseudospin-down) orientations of the edge states, respectively. These phenomena are very similar to the real spin states of quantum spin Hall effect in electronic systems. We also develop an effective Hamiltonian for the associated bands to characterize the topological properties of the AC around the Brillouin zone center by the kp perturbation method. We calculate the spin Chern numbers of the ACs, and reveal the inherent link between the band inversion and the topological phase transition. With full-wave simulations, we demonstrate the one-way propagation of sound waves along the interface between topologically distinct ACs, and demonstrate the robustness of the edge states against different types of defects including bends, cavity and disorder. Our design provides a new way to realize acoustic topological effects in a wide frequency range spanning from infrasound to ultrasound. Potential applications and acoustic devices based on our design are expected, so that people can manipulate and transport sound waves in a more efficient way.
      Corresponding author: Mei Jun, phjunmei@scut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274120, 11574087).
    [1]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494

    [2]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405

    [3]

    Laughlin R B 1983 Phys. Rev. Lett. 50 1395

    [4]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [5]

    Bernevig B A, Zhang S C 2006 Phys. Rev. Lett. 96 106802

    [6]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [7]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802

    [8]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [9]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [10]

    Wang Z, Chong Y D, Joannopoulos J D, Soljačić M 2008 Phys. Rev. Lett. 100 013905

    [11]

    Wang Z, Chong Y D, Joannopoulos J D, Soljačić M 2009 Nature 461 772

    [12]

    Fang Y T, He H Q, Hu J X, Chen L K, Wen Z 2015 Phys. Rev. A 91 033827

    [13]

    Fleury R, Sounas D L, Sieck C F, Haberman M R, Al A 2014 Science 343 516

    [14]

    Yang Z J, Gao F, Shi X H, Lin X, Gao Z, Chong Y D, Zhang B L 2015 Phys. Rev. Lett. 114 114301

    [15]

    Ni X, He C, Sun X C, Liu X P, Lu M H, Feng L, Chen Y F 2015 New J. Phys. 17 053016

    [16]

    Chen Z G, Wu Y 2016 Phys. Rev. Appl. 5 054021

    [17]

    Khanikaev A B, Fleury R, Mousavi S H, Al A 2015 Nat. Commun. 6 8260

    [18]

    Fleury R, Sounas D L, Al A 2015 Phys. Rev. B 91 174306

    [19]

    Fleury R, Khanikaev A B, Alu A 2016 Nat. Commun. 7 11744

    [20]

    Peng Y G, Qin C Z, Zhao D G, Shen Y X, Xu X Y, Bao M, Jia H, Zhu X F 2016 Nat. Commun. 7 13368

    [21]

    He C, Li Z, Ni X, Sun X C, Yu S Y, Lu M H, Liu X P, Chen Y F 2016 Appl. Phys. Lett. 108 031904

    [22]

    Wei Q, Tian Y, Zuo S Y, Cheng Y, Liu X J 2017 Phys. Rev. B 95 094305

    [23]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901

    [24]

    Wang H X, Xu L, Chen H Y, Jiang J H 2016 Phys. Rev. B 93 235155

    [25]

    Mei J, Chen Z G, Wu Y 2016 Sci. Rep. 6 32752

    [26]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124

    [27]

    Zhang Z W, Wei Q, Cheng Y, Zhang T, Wu D J, Liu X J 2017 Phys. Rev. Lett. 118 084303

    [28]

    Chen Z G, Ni X, Wu Y, He C, Sun X C, Zheng L Y, Lu M H, Chen Y F 2014 Sci. Rep. 4 4613

    [29]

    Li Y, Mei J 2015 Opt. Express 23 12089

    [30]

    Li Y, Wu Y, Mei J 2014 Appl. Phys. Lett. 105 014107

    [31]

    Dai H Q, Liu T T, Jiao J R, Xia B Z, Yu D J 2017 J. Appl. Phys. 121 135105

    [32]

    Lu J Y, Qiu C Y, Ke M Z, Liu Z Y 2016 Phys. Rev. Lett. 116 093901

    [33]

    Ma T, Shvets G 2016 New J. Phys. 18 025012

    [34]

    Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F,Liu Z Y 2017 Nat. Phys. 13 369

    [35]

    Mei J, Wu Y, Chan C T, Zhang Z Q 2012 Phys. Rev. B 86 035141

    [36]

    Wu Y 2014 Opt. Express 22 1906

    [37]

    Lu J Y, Qiu C Y, Xu S J, Ye Y T, Ke M Z, Liu Z Y 2014 Phys. Rev. B 89 134302

    [38]

    Shen S Q, Shan W Y, Lu H Z 2011 Spin 1 33

  • [1]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494

    [2]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405

    [3]

    Laughlin R B 1983 Phys. Rev. Lett. 50 1395

    [4]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [5]

    Bernevig B A, Zhang S C 2006 Phys. Rev. Lett. 96 106802

    [6]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [7]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802

    [8]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [9]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [10]

    Wang Z, Chong Y D, Joannopoulos J D, Soljačić M 2008 Phys. Rev. Lett. 100 013905

    [11]

    Wang Z, Chong Y D, Joannopoulos J D, Soljačić M 2009 Nature 461 772

    [12]

    Fang Y T, He H Q, Hu J X, Chen L K, Wen Z 2015 Phys. Rev. A 91 033827

    [13]

    Fleury R, Sounas D L, Sieck C F, Haberman M R, Al A 2014 Science 343 516

    [14]

    Yang Z J, Gao F, Shi X H, Lin X, Gao Z, Chong Y D, Zhang B L 2015 Phys. Rev. Lett. 114 114301

    [15]

    Ni X, He C, Sun X C, Liu X P, Lu M H, Feng L, Chen Y F 2015 New J. Phys. 17 053016

    [16]

    Chen Z G, Wu Y 2016 Phys. Rev. Appl. 5 054021

    [17]

    Khanikaev A B, Fleury R, Mousavi S H, Al A 2015 Nat. Commun. 6 8260

    [18]

    Fleury R, Sounas D L, Al A 2015 Phys. Rev. B 91 174306

    [19]

    Fleury R, Khanikaev A B, Alu A 2016 Nat. Commun. 7 11744

    [20]

    Peng Y G, Qin C Z, Zhao D G, Shen Y X, Xu X Y, Bao M, Jia H, Zhu X F 2016 Nat. Commun. 7 13368

    [21]

    He C, Li Z, Ni X, Sun X C, Yu S Y, Lu M H, Liu X P, Chen Y F 2016 Appl. Phys. Lett. 108 031904

    [22]

    Wei Q, Tian Y, Zuo S Y, Cheng Y, Liu X J 2017 Phys. Rev. B 95 094305

    [23]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901

    [24]

    Wang H X, Xu L, Chen H Y, Jiang J H 2016 Phys. Rev. B 93 235155

    [25]

    Mei J, Chen Z G, Wu Y 2016 Sci. Rep. 6 32752

    [26]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124

    [27]

    Zhang Z W, Wei Q, Cheng Y, Zhang T, Wu D J, Liu X J 2017 Phys. Rev. Lett. 118 084303

    [28]

    Chen Z G, Ni X, Wu Y, He C, Sun X C, Zheng L Y, Lu M H, Chen Y F 2014 Sci. Rep. 4 4613

    [29]

    Li Y, Mei J 2015 Opt. Express 23 12089

    [30]

    Li Y, Wu Y, Mei J 2014 Appl. Phys. Lett. 105 014107

    [31]

    Dai H Q, Liu T T, Jiao J R, Xia B Z, Yu D J 2017 J. Appl. Phys. 121 135105

    [32]

    Lu J Y, Qiu C Y, Ke M Z, Liu Z Y 2016 Phys. Rev. Lett. 116 093901

    [33]

    Ma T, Shvets G 2016 New J. Phys. 18 025012

    [34]

    Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F,Liu Z Y 2017 Nat. Phys. 13 369

    [35]

    Mei J, Wu Y, Chan C T, Zhang Z Q 2012 Phys. Rev. B 86 035141

    [36]

    Wu Y 2014 Opt. Express 22 1906

    [37]

    Lu J Y, Qiu C Y, Xu S J, Ye Y T, Ke M Z, Liu Z Y 2014 Phys. Rev. B 89 134302

    [38]

    Shen S Q, Shan W Y, Lu H Z 2011 Spin 1 33

  • [1] Wang Yan-Lan, Li Yan. Pseudospin states and topological phase transitions in two-dimensional photonic crystals made of dielectric materials. Acta Physica Sinica, 2020, 69(9): 094206. doi: 10.7498/aps.69.20191962
    [2] Wang Yi-He, Zhang Zhi-Wang, Cheng Ying, Liu Xiao-Jun. Pseudospin modes of surface acoustic wave and topologically protected sound transmission in phononic crystal. Acta Physica Sinica, 2019, 68(22): 227805. doi: 10.7498/aps.68.20191363
    [3] Zheng Zhou-Fu, Yin Jian-Fei, Wen Ji-Hong, Yu Dian-Long. Topologically protected edge states of elastic waves in phononic crystal plates. Acta Physica Sinica, 2020, 69(15): 156201. doi: 10.7498/aps.69.20200542
    [4] Wang Qing-Hai, Li Feng, Huang Xue-Qin, Lu Jiu-Yang, Liu Zheng-You. The topological phase transition and the tunable interface states in granular crystal. Acta Physica Sinica, 2017, 66(22): 224502. doi: 10.7498/aps.66.224502
    [5] Shen Qing-Wei, Xu Lin, Jiang Jian-Hua. Topological phase transitions in core-shell gyromagnetic photonic crystal. Acta Physica Sinica, 2017, 66(22): 224102. doi: 10.7498/aps.66.224102
    [6] Yang Yuan,  Chen Shuai,  Li Xiao-Bing. Topological phase transitions in square-octagon lattice with Rashba spin-orbit coupling. Acta Physica Sinica, 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [7] Jia Ding, Ge Yong, Yuan Shou-Qi, Sun Hong-Xiang. Dual-band acoustic topological insulator based on honeycomb lattice sonic crystal. Acta Physica Sinica, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [8] Chen Ze-Guo, Wu Ying. Multiple topological phases in phononic crystals. Acta Physica Sinica, 2017, 66(22): 227804. doi: 10.7498/aps.66.227804
    [9] Pei Dong-Liang, Yang Tao, Chen Meng, Liu Yu, Xu Wen-Shuai, Zhang Man-Gong, Jiang Heng, Wang Yu-Ren. Broadband periodic and aperiodic acoustic topological insulator based on composite honeycomb structure. Acta Physica Sinica, 2020, 69(2): 024302. doi: 10.7498/aps.69.20191454
    [10] Geng Zhi-Guo, Peng Yu-Gui, Shen Ya-Xi, Zhao De-Gang, Zhu Xue-Feng. Topological acoustic transports in chiral sonic crystals. Acta Physica Sinica, 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [11] Dong Hua-Feng, Wu Fu-Gen, Mu Zhong-Fei, Zhong Hui-Lin. Effect of basis configuration on acoustic band structure in two-dimensional complex phononic crystals. Acta Physica Sinica, 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
    [12] Long Yang, Ren Jie, Jiang Hai-Tao, Sun Yong, Chen Hong. Quantum spin Hall effect in metamaterials. Acta Physica Sinica, 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [13] Yu Xiang-Min, Tan Xin-Sheng, Yu Hai-Feng, Yu Yang. Topological quantum material simulated with superconducting quantum circuits. Acta Physica Sinica, 2018, 67(22): 220302. doi: 10.7498/aps.67.20181857
    [14] Yang Chao, Chen Shu. Topological invariant in quench dynamics. Acta Physica Sinica, 2019, 68(22): 220304. doi: 10.7498/aps.68.20191410
    [15] Li Xiao-Chun, Yi Xiu-Ying, Xiao Qing-Wu, Liang Hong-Yu. Defect states in three-component phononic crystal. Acta Physica Sinica, 2006, 55(5): 2300-2305. doi: 10.7498/aps.55.2300
    [16] Cao Hui-Xian, Mei Jun. Semi-Dirac points in two-dimensional phononic crystals. Acta Physica Sinica, 2015, 64(19): 194301. doi: 10.7498/aps.64.194301
    [17] Hao Ning, Hu Jiang-Ping. Research progress of topological quantum states in iron-based superconductor. Acta Physica Sinica, 2018, 67(20): 207101. doi: 10.7498/aps.67.20181455
    [18] Zhao Fang, Yuan Li-Bo. Characteristics of the band structure in two-dimensional phononic crystals with complex lattices. Acta Physica Sinica, 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
    [19] Cai Li, Han Xiao-Yun. Study of the band-structure and the uncoupled modes in two-dimensional phononic crystals with the multiple-scattering theory. Acta Physica Sinica, 2006, 55(11): 5866-5871. doi: 10.7498/aps.55.5866
    [20] Wang Wen-Gang, Liu Zheng-You, Zhao De-Gang, Ke Man-Zhu. Resonant tunneling of acoustic waves in 1D phononic crystal. Acta Physica Sinica, 2006, 55(9): 4744-4747. doi: 10.7498/aps.55.4744
  • Citation:
Metrics
  • Abstract views:  955
  • PDF Downloads:  382
  • Cited By: 0
Publishing process
  • Received Date:  24 July 2017
  • Accepted Date:  19 September 2017
  • Published Online:  05 November 2017

Topological phase transitions caused by a simple rotational operation in two-dimensional acoustic crystals

    Corresponding author: Mei Jun, phjunmei@scut.edu.cn
  • 1. School of Physics, South China University of Technology, Guangzhou 510641, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 11274120, 11574087).

Abstract: We design a two-dimensional acoustic crystal (AC) to obtain topologically protected edge states for sound waves. The AC is composed of a triangular array of a complex unit cell consisting of two identical triangle-shaped steel rods arranged in air. The steel rods are placed on the vertices of the hexagonal unit cell so that the whole lattice possesses the C6v symmetry. We show that by simply rotating all triangular rods around their respective centers by 180 degrees, a topological phase transition can be achieved, and more importantly, such a transition is accomplished with no need of changing the fill ratios or changing the positions of the rods. Interestingly, the achieved topologically nontrivial band gap has a very large frequency width, which is really beneficial to future applications. The topological properties of the AC are rooted in the spatial symmetries of the eigenstates. It is well known that there are two doubly-degenerate eigenstates at the point for a C6v point group, and they are usually called the p and d states in electronic system. By utilizing the spatial symmetries of the p and d states in the AC, we can construct the pseudo-time reversal symmetry which renders the Kramers doubling in this classical system. We find pseudospin states in the interface between topologically trivial and nontrivial ACs, where anticlockwise (clockwise) rotational behaviors of time-averaged Poynting vectors correspond to the pseudospin-up (pseudospin-down) orientations of the edge states, respectively. These phenomena are very similar to the real spin states of quantum spin Hall effect in electronic systems. We also develop an effective Hamiltonian for the associated bands to characterize the topological properties of the AC around the Brillouin zone center by the kp perturbation method. We calculate the spin Chern numbers of the ACs, and reveal the inherent link between the band inversion and the topological phase transition. With full-wave simulations, we demonstrate the one-way propagation of sound waves along the interface between topologically distinct ACs, and demonstrate the robustness of the edge states against different types of defects including bends, cavity and disorder. Our design provides a new way to realize acoustic topological effects in a wide frequency range spanning from infrasound to ultrasound. Potential applications and acoustic devices based on our design are expected, so that people can manipulate and transport sound waves in a more efficient way.

Reference (38)

Catalog

    /

    返回文章
    返回