Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ionizing radiation damage mechanism and biases correlation of AlGaN/GaN high electron mobility transistor devices

Dong Shi-Jian Guo Hong-Xia Ma Wu-Ying Lv Ling Pan Xiao-Yu Lei Zhi-Feng Yue Shao-Zhong Hao Rui-Jing Ju An-An Zhong Xiang-Li Ouyang Xiao-Ping

Citation:

Ionizing radiation damage mechanism and biases correlation of AlGaN/GaN high electron mobility transistor devices

Dong Shi-Jian, Guo Hong-Xia, Ma Wu-Ying, Lv Ling, Pan Xiao-Yu, Lei Zhi-Feng, Yue Shao-Zhong, Hao Rui-Jing, Ju An-An, Zhong Xiang-Li, Ouyang Xiao-Ping
PDF
HTML
Get Citation
  • In this paper, the total dose effect on AlGaN/GaN high-electron-mobility transistor (HEMT) devices after 60Co γ-ray irradiation with a total dose of 1 Mrad(Si) was investigated at different biases (VGS = –3 V, VDS = 0.5 V; VGS = –1.9 V, VDS = 0.5 V; VGS = 0 V, VDS = 0 V). The experimental results were analyzed using 1/f low-frequency noise and direct current electrical characteristics. The electrical parameters degraded mostly under zero bias condition because of the radiation-induced defect charge of the oxide layer and the interface state. Wherein, the saturation drain current was reduced by 36.28%, and the maximum transconductance was reduced by 52.94%. The reason was that the oxide dielectric layer of AlGaN/GaN HEMT devices generated electron-hole pairs under γ-ray irradiation, and most of the electrons were quickly swept out of the oxide region corresponding to the gate-source and gate-drain spacer regions, and most of the holes remained in the oxide. Under the action of the built-in electric field, holes slowly moved towards the interface between the oxide and AlGaN, which depleted the two-dimensional electron gas of the channel.According to the McWhorter model, the low-frequency noise in the AlGaN/GaN HEMT devices results from random fluctuations of carriers, which are caused by the capture and release processes of carriers by traps and defect states in the barrier layer. The extracted defect densities in AlGaN/GaN HEMT devices increased from 4.080 × 1017 cm–3·eV–1 to 6.621 × 1017 cm–3·eV–1 under the condition of zero bias, and the result was in good agreement with test results of the direct currentelectrical characteristics. The damage mechanism was the radiation-induced defect charge in the oxide layer and the interface state, which increased the flat-band voltage noise power spectral density of the AlGaN/GaN HEMT devices. According to the charge tunneling mechanism, the spatial distribution of defect in the barrier layer was extracted, and the result also proved that the densities of radiation-induced defect charges under zero bias were more than the other biases. The experimental results showed that zero bias was the worst bias for AlGaN/GaN HEMT devices irradiation.
      Corresponding author: Guo Hong-Xia, guohxnint@126.com
    [1]

    周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红 2018 物理学报 67 178501Google Scholar

    Zhou X Y, Lv Y J, Tan X, Wang Y G, Song X B, He Z Z, Zhang Z R, Liu Q B, Han T T, Fang Y L, Feng Z H 2018 Acta Phys. Sin. 67 178501Google Scholar

    [2]

    Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815Google Scholar

    [3]

    Meneghesso G, Verzellesi G, Rampazzo F, Zanon F, Tazzoli A, Meneghini M, Zanoni E 2008 IEEE Trans. Device Mater. Reliab. 8 332Google Scholar

    [4]

    Gong J M, Wang Q, Yan J D, Liu F Q, Feng C, Wang X L, Wang Z G 2016 Chin. Phys. Lett. 33 117303Google Scholar

    [5]

    Wu H, Duan B X, Yang L Y, Yang Y T 2019 Chin. Phys. B 28 027302Google Scholar

    [6]

    Zhang L, Lester L F, Baca A G, Shul R J, Chang P C, Willison C G, Mishra U K, Denbaars S P, Zolper J C 2000 IEEE Trans. Electron Devices 47 507Google Scholar

    [7]

    Jayarman R, Sodini C G 1989 IEEE Trans. Electron Devices 36 1773Google Scholar

    [8]

    Fleetwood D M, Shaneyfelt M R, Schwank J R 1994 Appl. Phys. Lett. 64 1965Google Scholar

    [9]

    王凯, 刘远, 陈海波, 邓婉玲, 恩云飞, 张平 2015 物理学报 64 108501Google Scholar

    Wang K, Liu Y, Chen H B, Deng W L, En Y F, Zhang P 2015 Acta Phys. Sin. 64 108501Google Scholar

    [10]

    刘远, 陈海波, 何玉娟, 王信, 岳龙, 恩云飞, 刘默寒 2015 物理学报 64 078501Google Scholar

    Liu Y, Chen H B, He Y J, Wang X, Yue L, En Y F, Liu M H 2015 Acta Phys. Sin. 64 078501Google Scholar

    [11]

    孙鹏, 杜磊, 何亮, 陈文豪, 刘玉栋, 赵瑛 2012 物理学报 61 127808Google Scholar

    Sun P, Du L, He L, Chen W H, Liu Y D, Zhao Y 2012 Acta Phys. Sin. 61 127808Google Scholar

    [12]

    刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣 2014 物理学报 63 098503Google Scholar

    Liu Y, Wu W J, Li B, En Y F, Wang L, Liu Y R 2014 Acta Phys. Sin. 63 098503Google Scholar

    [13]

    Fung T C, Baek G, Kanicki J 2010 J. Appl. Phys. 108 074518Google Scholar

    [14]

    Zheng X, Feng S W, Peng C, Lin G, Bai L, Li X, Yang Y, Pan S J, Hu Z X, Li X Y, Zhang Y M 2019 IEEE Trans. Electron Devices 66 3784Google Scholar

    [15]

    Smith M D, O’Mahony D, Vitobello F, Muschitiello M, Costantino A, Barnes A R, Parbrook P J 2016 Semicond. Sci. Technol. 31 025008Google Scholar

    [16]

    Bhuiyan M A, Zhou H, Chang S J, Lou X B, Gong X, Jiang R, Gong H Q, Zhang E X, Won C H, Lim J W, Lee J H, Gordon R G, Reed R A, Fleetwood D M, Ye P D, Ma T P 2017 IEEE Trans. Nucl. Sci. 65 46Google Scholar

    [17]

    Choi H S, Jeon S, Kim H, Shin J, Kim C, Chung U I 2011 IEEE Electron Device Lett. 32 1083Google Scholar

    [18]

    Rashmi A, Kranti S, Haldar, Gupta R S 2002 Solid State Electron. 46 621Google Scholar

    [19]

    谷文萍, 张进城, 王冲, 冯倩, 马晓华, 郝跃 2009 物理学报 58 1161Google Scholar

    Gu W P, Zhang J C, Wang C, Feng Q, Ma X H, Hao Y 2009 Acta Phys. Sin. 58 1161Google Scholar

    [20]

    吕玲 2013 博士学位论文 (西安: 西安电子科技大学)

    Lü L 2013 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [21]

    Hooge F N 1994 IEEE Trans. Electron Devices 41 1926Google Scholar

    [22]

    Simoen E, Mercha A, Claeys C, Lukyanchikova N 2007 Solid State Electron. 51 16Google Scholar

    [23]

    Jomaah J, Balestra 2004 IEE Proc. Circuits Devices Syst. 151 111Google Scholar

    [24]

    Liu Y, Wu W J, En Y F, Wang L, Lei Z F, Wang X H 2014 IEEE Electron Device Lett. 35 369Google Scholar

    [25]

    Ioannidis E G, Tsormpatzoglou A, Tassis D H, Dimitriadis C A, Templier F, Kamarinos G 2010 J. Appl. Phys. 108 106103Google Scholar

    [26]

    Ghibaudo G, Roux O, Nguyen-Duc C, Balestra F, Brini J 1991 Phys. Status Solidi A 124 571Google Scholar

    [27]

    Christensson S, Lundstrom I, Svensson C 1968 Solid State Electron. 11 797Google Scholar

    [28]

    Rahal M, Lee M, Burdett A P 2002 IEEE Trans. Electron Devices 49 319Google Scholar

  • 图 1  AlGaN/GaN HEMT器件的剖面图

    Figure 1.  AlGaN/GaN HEMT devices’ cross-section.

    图 2  AlGaN/GaN HEMT器件的低频噪声测量系统[17]

    Figure 2.  AlGaN/GaN HEMT devices’ low frequency noise measurement system.

    图 3  零偏下AlGaN/GaN HEMT器件辐照前后输出特性曲线(a)与转移特性曲线(b)

    Figure 3.  The output characteristic curve (a) and transfer characteristic curve (b) of the AlGaN/GaN HEMT device before and after irradiation under the zero-bias.

    图 4  AlGaN/GaN HEMT器件辐照时的电荷分布图 (a)关态和半开态; (b)零偏

    Figure 4.  Charge distribution patterns of AlGaN/GaN HEMT devices: (a) The off and semi-on states; (b) zero-bias.

    图 5  AlGaN/GaN HEMT器件辐照前后沟道电流归一化噪声功率谱密度 (a)关态; (b)半开态; (c)零偏

    Figure 5.  Normalized channel current noise power spectral density in the AlGaN/GaN HEMT devices before and after irradiation: (a) OFF state; (b) SEMI-ON state; (c) zero-bias.

    图 6  AlGaN/GaN HEMT器件辐照前后沟道电流归一化噪声功率谱密度随过驱动电压的变化(点: 测量值; 实线: 拟合值) (a)关态; (b)半开态; (c)零偏

    Figure 6.  Normalized channel current noise power spectral density versus overdrive voltage in the AlGaN/GaN HEMT devices before and after irradiation: (a) OFF state; (b) SEMI-ON state; (c) zero-bias (dot: measured value; continuous line: fitted value).

    图 7  AlGaN/GaN HEMT器件辐照前后沟道电流归一化噪声功率谱密度随沟道电流的变化(f = 25 Hz, 点: 测量值; 实线: 拟合值) (a)关态; (b); 半开态; (c)零偏

    Figure 7.  Normalized channel current noise power spectral density versus channel current in the AlGaN/GaN HEMT devices before and after irradiation: (a) OFF state; (b) SEMI-ON state; (c) zero-bias (f = 25 Hz, dot: measured value; continuous line: fitted value).

    图 8  AlGaN/GaN HEMT器件辐照前后势垒层内陷阱电荷密度的空间分布 (a)关态; (b)半开态; (c)零偏

    Figure 8.  Extracted spatial distribution of trapped charges in the AlGaN/GaN HEMT devices’ barrier layer: (a) OFF state; (b) SEMI-ON state; (c) zero-bias.

    表 1  AlGaN/GaN HEMT器件辐照实验偏置设置

    Table 1.  The biases set of AlGaN/GaN HEMT device irradiation experiment.

    VGS/VVDS/V
    关态(OFF)–3.00.5
    半开态(SEMI-ON)–1.90.5
    零偏(zero-bias)00
    DownLoad: CSV

    表 2  不同偏置下AlGaN/GaN HEMT器件辐照前后饱和漏电流与最高跨导的变化

    Table 2.  Variation of saturation drain current and maximum transconductance before and after irradiation in AlGaN/GaNHEMT devices with different biases.

    关态(OFF)半开(SEMI-ON)零偏(zero-bias)
    ΔIDSsat/%–26.00–31.42–36.28
    Δgmmax/%–22.86–34.58–52.94
    DownLoad: CSV

    表 3  不同偏置下AlGaN/GaN HEMT器件辐照前后平带电压噪声功率谱密度(单位: V2·Hz–1)

    Table 3.  Flat-band voltage noise power spectral density in the AlGaN/GaN HEMT devices before and after irradiation under different biases (in V2·Hz–1).

    关态
    (OFF)
    半开态
    (SEMI-ON)
    零偏
    (zero-bias)
    0 rad(Si)3.20 × 10–142.65 × 10–143.18 × 10–14
    1 Mrad(Si)4.21 × 10–143.85 × 10–145.16 × 10–14
    DownLoad: CSV

    表 4  不同偏置下AlGaN/GaN HEMT器件辐照前后缺陷密度(单位: cm–3·eV–1)

    Table 4.  The defect density in the AlGaN/GaN HEMT devices before and after irradiation under different biases (in cm–3·eV–1).

    关态
    (OFF)
    半开态
    (SEMI-ON)
    零偏
    (zero-bias)
    0 rad(Si)4.106 × 10173.400 × 10174.080 × 1017
    1 Mrad(Si)5.402 × 10174.940 × 10176.621 × 1017
    ΔNt/%31.5645.2962.28
    DownLoad: CSV
  • [1]

    周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红 2018 物理学报 67 178501Google Scholar

    Zhou X Y, Lv Y J, Tan X, Wang Y G, Song X B, He Z Z, Zhang Z R, Liu Q B, Han T T, Fang Y L, Feng Z H 2018 Acta Phys. Sin. 67 178501Google Scholar

    [2]

    Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815Google Scholar

    [3]

    Meneghesso G, Verzellesi G, Rampazzo F, Zanon F, Tazzoli A, Meneghini M, Zanoni E 2008 IEEE Trans. Device Mater. Reliab. 8 332Google Scholar

    [4]

    Gong J M, Wang Q, Yan J D, Liu F Q, Feng C, Wang X L, Wang Z G 2016 Chin. Phys. Lett. 33 117303Google Scholar

    [5]

    Wu H, Duan B X, Yang L Y, Yang Y T 2019 Chin. Phys. B 28 027302Google Scholar

    [6]

    Zhang L, Lester L F, Baca A G, Shul R J, Chang P C, Willison C G, Mishra U K, Denbaars S P, Zolper J C 2000 IEEE Trans. Electron Devices 47 507Google Scholar

    [7]

    Jayarman R, Sodini C G 1989 IEEE Trans. Electron Devices 36 1773Google Scholar

    [8]

    Fleetwood D M, Shaneyfelt M R, Schwank J R 1994 Appl. Phys. Lett. 64 1965Google Scholar

    [9]

    王凯, 刘远, 陈海波, 邓婉玲, 恩云飞, 张平 2015 物理学报 64 108501Google Scholar

    Wang K, Liu Y, Chen H B, Deng W L, En Y F, Zhang P 2015 Acta Phys. Sin. 64 108501Google Scholar

    [10]

    刘远, 陈海波, 何玉娟, 王信, 岳龙, 恩云飞, 刘默寒 2015 物理学报 64 078501Google Scholar

    Liu Y, Chen H B, He Y J, Wang X, Yue L, En Y F, Liu M H 2015 Acta Phys. Sin. 64 078501Google Scholar

    [11]

    孙鹏, 杜磊, 何亮, 陈文豪, 刘玉栋, 赵瑛 2012 物理学报 61 127808Google Scholar

    Sun P, Du L, He L, Chen W H, Liu Y D, Zhao Y 2012 Acta Phys. Sin. 61 127808Google Scholar

    [12]

    刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣 2014 物理学报 63 098503Google Scholar

    Liu Y, Wu W J, Li B, En Y F, Wang L, Liu Y R 2014 Acta Phys. Sin. 63 098503Google Scholar

    [13]

    Fung T C, Baek G, Kanicki J 2010 J. Appl. Phys. 108 074518Google Scholar

    [14]

    Zheng X, Feng S W, Peng C, Lin G, Bai L, Li X, Yang Y, Pan S J, Hu Z X, Li X Y, Zhang Y M 2019 IEEE Trans. Electron Devices 66 3784Google Scholar

    [15]

    Smith M D, O’Mahony D, Vitobello F, Muschitiello M, Costantino A, Barnes A R, Parbrook P J 2016 Semicond. Sci. Technol. 31 025008Google Scholar

    [16]

    Bhuiyan M A, Zhou H, Chang S J, Lou X B, Gong X, Jiang R, Gong H Q, Zhang E X, Won C H, Lim J W, Lee J H, Gordon R G, Reed R A, Fleetwood D M, Ye P D, Ma T P 2017 IEEE Trans. Nucl. Sci. 65 46Google Scholar

    [17]

    Choi H S, Jeon S, Kim H, Shin J, Kim C, Chung U I 2011 IEEE Electron Device Lett. 32 1083Google Scholar

    [18]

    Rashmi A, Kranti S, Haldar, Gupta R S 2002 Solid State Electron. 46 621Google Scholar

    [19]

    谷文萍, 张进城, 王冲, 冯倩, 马晓华, 郝跃 2009 物理学报 58 1161Google Scholar

    Gu W P, Zhang J C, Wang C, Feng Q, Ma X H, Hao Y 2009 Acta Phys. Sin. 58 1161Google Scholar

    [20]

    吕玲 2013 博士学位论文 (西安: 西安电子科技大学)

    Lü L 2013 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [21]

    Hooge F N 1994 IEEE Trans. Electron Devices 41 1926Google Scholar

    [22]

    Simoen E, Mercha A, Claeys C, Lukyanchikova N 2007 Solid State Electron. 51 16Google Scholar

    [23]

    Jomaah J, Balestra 2004 IEE Proc. Circuits Devices Syst. 151 111Google Scholar

    [24]

    Liu Y, Wu W J, En Y F, Wang L, Lei Z F, Wang X H 2014 IEEE Electron Device Lett. 35 369Google Scholar

    [25]

    Ioannidis E G, Tsormpatzoglou A, Tassis D H, Dimitriadis C A, Templier F, Kamarinos G 2010 J. Appl. Phys. 108 106103Google Scholar

    [26]

    Ghibaudo G, Roux O, Nguyen-Duc C, Balestra F, Brini J 1991 Phys. Status Solidi A 124 571Google Scholar

    [27]

    Christensson S, Lundstrom I, Svensson C 1968 Solid State Electron. 11 797Google Scholar

    [28]

    Rahal M, Lee M, Burdett A P 2002 IEEE Trans. Electron Devices 49 319Google Scholar

  • [1] Lü Ling, Xing Mu-Han, Xue Bo-Rui, Cao Yan-Rong, Hu Pei-Pei, Zheng Xue-Feng, Ma Xiao-Hua, Hao Yue. Effect of heavy ion radiation on low frequency noise characteristics of AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] Wang Shuai, Ge Chen, Xu Zu-Yin, Cheng Ai-Qiang, Chen Dun-Jun. Modeling of temperature effect on DC characteristics of microwave GaN devices. Acta Physica Sinica, 2024, 73(17): 177101. doi: 10.7498/aps.73.20240765
    [3] Wu Peng, Li Ruo-Han, Zhang Tao, Zhang Jin-Cheng, Hao Yue. Interface-state suppression of AlGaN/GaN Schottky barrier diodes with post-anode-annealing treatment. Acta Physica Sinica, 2023, 72(19): 198501. doi: 10.7498/aps.72.20230553
    [4] Liu Nai-Zhang, Yao Ruo-He, Geng Kui-Wei. Gate capacitance model of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2021, 70(21): 217301. doi: 10.7498/aps.70.20210700
    [5] Liu Xu-Yang, Zhang He-Qiu, Li Bing-Bing, Liu Jun, Xue Dong-Yang, Wang Heng-Shan, Liang Hong-Wei, Xia Xiao-Chuan. Characteristics of AlGaN/GaN high electron mobility transistor temperature sensor. Acta Physica Sinica, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [6] Hao Rui-Jing, Guo Hong-Xia, Pan Xiao-Yu, Lü Ling, Lei Zhi-Feng, Li Bo, Zhong Xiang-Li, Ouyang Xiao-Ping, Dong Shi-Jian. Neutron-induced displacement damage effect and mechanism of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [7] Liu Yan-Li, Wang Wei, Dong Yan, Chen Dun-Jun, Zhang Rong, Zheng You-Dou. Effect of structure parameters on performance of N-polar GaN/InAlN high electron mobility transistor. Acta Physica Sinica, 2019, 68(24): 247203. doi: 10.7498/aps.68.20191153
    [8] Liu Jing, Wang Lin-Qian, Huang Zhong-Xiao. Current collapse suppression in AlGaN/GaN high electron mobility transistor with groove structure. Acta Physica Sinica, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [9] Zhou Xing-Ye, Lv Yuan-Jie, Tan Xin, Wang Yuan-Gang, Song Xu-Bo, He Ze-Zhao, Zhang Zhi-Rong, Liu Qing-Bin, Han Ting-Ting, Fang Yu-Long, Feng Zhi-Hong. Mechanisms of trapping effects in short-gate GaN-based high electron mobility transistors with pulsed I-V measurement. Acta Physica Sinica, 2018, 67(17): 178501. doi: 10.7498/aps.67.20180474
    [10] Tang Wen-Xin, Hao Rong-Hui, Chen Fu, Yu Guo-Hao, Zhang Bao-Shun. p-GaN hybrid anode AlGaN/GaN diode with 1000 V operation. Acta Physica Sinica, 2018, 67(19): 198501. doi: 10.7498/aps.67.20181208
    [11] Zhang Li, Lin Zhi-Yu, Luo Jun, Wang Shu-Long, Zhang Jin-Cheng, Hao Yue, Dai Yang, Chen Da-Zheng, Guo Li-Xin. High breakdown voltage lateral AlGaN/GaN high electron mobility transistor with p-GaN islands buried buffer layer for power applications. Acta Physica Sinica, 2017, 66(24): 247302. doi: 10.7498/aps.66.247302
    [12] Wang Kai, Xing Yan-Hui, Han Jun, Zhao Kang-Kang, Guo Li-Jian, Yu Bao-Ning, Deng Xu-Guang, Fan Ya-Ming, Zhang Bao-Shun. Growths of Fe-doped GaN high-resistivity buffer layers for AlGaN/GaN high electron mobility transistor devices. Acta Physica Sinica, 2016, 65(1): 016802. doi: 10.7498/aps.65.016802
    [13] Liu Yang, Chai Chang-Chun, Yu Xin-Hai, Fan Qing-Yang, Yang Yin-Tang, Xi Xiao-Wen, Liu Sheng-Bei. Damage effects and mechanism of the GaN high electron mobility transistor caused by high electromagnetic pulse. Acta Physica Sinica, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [14] Ren Jian, Yan Da-Wei, Gu Xiao-Feng. Degradation mechanism of leakage current in AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [15] Duan Bao-Xing, Yang Yin-Tang, Kevin J. Chen. Breakdown voltage analysis for new Al0.25Ga0.75N/GaN HEMT with F ion implantation. Acta Physica Sinica, 2012, 61(22): 227302. doi: 10.7498/aps.61.227302
    [16] Ma Ji-Gang, Ma Xiao-Hua, Zhang Hui-Long, Cao Meng-Yi, Zhang Kai, Li Wen-Wen, Guo Xing, Liao Xue-Yang, Chen Wei-Wei, Hao Yue. A semiempirical model for kink effect on the AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [17] Wang Chong, Quan Si, Ma Xiao-Hua, Hao Yue, Zhang Jin-Cheng, Mao Wei. High temperature annealing of enhancement-mode AlGaN/GaN high-electron-mobility transistors. Acta Physica Sinica, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [18] Wang Chong, Quan Si, Zhang Jin-Feng, Hao Yue, Feng Qian, Chen Jun-Feng. Simulation and experimental investigation of recessed-gate AlGaN/GaN HEMT. Acta Physica Sinica, 2009, 58(3): 1966-1970. doi: 10.7498/aps.58.1966
    [19] Wei Wei, Hao Yue, Feng Qian, Zhang Jin-Cheng, Zhang Jin-Feng. Geometrical optimization of AlGaN/GaN field-plate high electron mobility transistor. Acta Physica Sinica, 2008, 57(4): 2456-2461. doi: 10.7498/aps.57.2456
    [20] Guo Liang-Liang, Feng Qian, Hao Yue, Yang Yan. Study of high breakdown-voltage AlGaN/GaN FP-HEMT. Acta Physica Sinica, 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
Metrics
  • Abstract views:  10453
  • PDF Downloads:  209
  • Cited By: 0
Publishing process
  • Received Date:  12 October 2019
  • Accepted Date:  07 January 2020
  • Published Online:  05 April 2020

/

返回文章
返回