Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Development of 200 kV multi-function pulsed radiation system

Lü Ze-Qi Xie Yan-Zhao Gou Ming-Yue Chen Xiao-Yu Zhou Jin-Shan Li Mei Zhou Yi

Citation:

Development of 200 kV multi-function pulsed radiation system

Lü Ze-Qi, Xie Yan-Zhao, Gou Ming-Yue, Chen Xiao-Yu, Zhou Jin-Shan, Li Mei, Zhou Yi
PDF
HTML
Get Citation
  • A multi-functional pulsed radiation system with a peak voltage of 200 kV, an impedance of 2 Ω, and a full width at half maximum (FWHM) of 30 ns is developed. The system can be switched flexibly in two states of generating pulsed electron beam and pulsed X-ray by changing the cathode and anode. It consists of a pulse power driving source, a vacuum diode, and an experimental cavity. A Marx generator, a high energy storage water transmission line, and two pulse compression switches are utilized to generate a high voltage on diode. An effector can be placed in the experimental cavity which has the same vacuum as diode. An insulation structure of transmission line and a diode are optimized to guide in system design. The system can provide a multi-functional experimental platform for investigating pulse power technology, system-generated electromagnetic pulse, biological radiation effect, etc. The Marx generator generates a high-voltage pulse with hundreds of nanoseconds in FWHM and hundreds of kilovolts in peak value. The pulse is compressed by the main switch and pulse forming switch and then loaded to the diode. Electrons are emitted from diode cathode under the high-voltage pulse and accelerated in the gap. The electrons are extracted directly or converted into X-ray through the anode. Aluminized polyethylene is used as an anode when pulsed electron beam is generated, and tantalum film is used when pulsed X-ray is generated. Working state can be switched by changing the cathode and anode of diode. The result shows that a current of 83 kA pulsed electron beam and an average energy of 67 keV X-ray are generated. Pulsed X-ray has good uniformity and low electron proportion (0.02%). In order to monitor the operation state and output parameter of the system comprehensively, a complete measurement system is established. Three capacitive voltage dividers are set at the beginning of transmission line, the end of pulse forming line, and the end of output line, while a B - dot current monitor is set at the diode. A Faraday cup is developed to measure the current intensity and the total energy of pulsed electron beam. For energy spectrum, dose and electron proportion, the measurement system composed of pulsed X-ray including spectrometric system, dose system and Rogowski Coil is build.
      Corresponding author: Xie Yan-Zhao, yzxie@xjtu.edu.cn
    [1]

    王晶晶 2016 硕士学位论文 (杭州: 浙江大学)

    Wang J J 2016 M. S. Thesis (Hangzhou: Zhejiang University) (in Chinese)

    [2]

    王波, 刘海浪, 祁正伟, 张国培, 王小宇 2018 热加工工艺 47 19Google Scholar

    Wang B, Liu H L, Qi Z W, Zhang G P, Wang X Y 2018 Hot Working Technology 47 19Google Scholar

    [3]

    Ribiere M, Dortan F D G D, Delaunay R, Aubert D, Dalmeida T 2020 IEEE Trans. Nucl. Sci. 67 1722Google Scholar

    [4]

    Higgins D F, Lee K S H, Marin L 1978 IEEE Trans. Antennas Propag. 26 14Google Scholar

    [5]

    Chen J, Wang J, Tao Y, Chen Z, Wang Y, Niu S 2019 IEEE Trans. Nucl. Sci. 66 820Google Scholar

    [6]

    刘锡三 2007 高功率脉冲技术(北京: 国防工业出版社) 第178−183页

    Liu X S 2007 High Pulsed Power Technology (Beijing: National Defense Industry Press) pp178−183 (in Chinese)

    [7]

    邱爱慈 2016 脉冲功率技术应用 (西安: 陕西科学出版社) 第39页

    Qiu A C 2016 Pulsed Power Technology Application (Xi’an: Shaanxi Science and Technology Press) p39 (in Chinese)

    [8]

    吴治华 1997 原子核物理实验方法 (北京: 原子能出版社) 第49页

    Wu Z H 1997 Experimental methods of nuclear physics (Beijing: Atomic Energy Press) p49 (in Chinese)

    [9]

    何辉, 禹海军, 王毅, 戴文华 2019 强激光与粒子束 31 125102Google Scholar

    He H, Yu H J, Wang Y, Dai W H 2019 High Pow. Las. Part. Beam. 31 125102Google Scholar

    [10]

    Manciu M, Manciu F S, Teodor V, Nes E, Waggener R G 2009 J. X-Ray Sci. Technol. 17 85Google Scholar

    [11]

    欧阳晓平, 李真富, 张国光, 霍裕昆, 张前美, 张显鹏, 宋献才, 贾焕义, 雷建华, 孙远程 2002 物理学报 51 1502Google Scholar

    Ouyang X P, Li Z F, Zhang G G, Huo Y K, Zhang Q M, Zhang X P, Song X C, Jia H Y, Lei J H, Sun Y C 2002 Acta Phys. Sin. 51 1502Google Scholar

    [12]

    苏兆锋, 来定国, 邱孟通, 任书庆, 徐启福, 杨实 2020 强激光与粒子束 32 035005Google Scholar

    Su Z F, Lai D G, Qiu M T, Ren S Q, Xu Q F, Yang S 2020 High Pow. Las. Part. Beam. 32 035005Google Scholar

    [13]

    苏兆锋, 杨海亮, 邱爱慈, 孙剑锋, 丛培天, 王亮平, 雷天时, 韩娟娟 2010 物理学报 59 7729Google Scholar

    Su Z F, Yang H L, Qiu A C, Sun J F, Cong P T, Wang L P, Lei T S, Han J J 2010 Acta Phys. Sin. 59 7729Google Scholar

    [14]

    Baird L C 1981 Med. Phys. 8 319Google Scholar

    [15]

    Waggener R G, Blough M M, Terry J A, Chen D, Lee N E, Zhang S, McDavid W D 1999 Med. Phys. (Lancaster) 26 1269Google Scholar

    [16]

    来定国, 张永民, 李进玺, 苏兆峰, 张玉英, 任书庆, 杨莉, 杨实 2013 强激光与粒子束 25 1396Google Scholar

    Lai D G, Zhang Y M, Li J X, Su Z F, Zhang Y Y, Ren S Q, Yang L, Yang S 2013 High Pow. Las. Part. Beam. 25 1396Google Scholar

    [17]

    Meng C, Xu Z, Jiang Y, Zheng W, Dang Z 2017 IEEE Trans. Nucl. Sci. 10 2618Google Scholar

    [18]

    Xu Z, Meng C, Jiang Y, Wu P 2020 IEEE Trans. Nucl. Sci. 67 425Google Scholar

    [19]

    周开明, 王艳, 邓建红 2014 强激光与粒子束 26 073207Google Scholar

    Zhou K M, Wang Y, Deng J H 2014 High Pow. Las. Part. Beam. 26 073207Google Scholar

    [20]

    马良, 程引会, 吴伟, 李进玺, 朱梦, 李宝忠, 赵墨, 郭景海 2012 强激光与粒子束 24 2915Google Scholar

    Ma L, Cheng Y H, Wu W, Li J X, Zhu M, Li B Z, Zhao M, Guo J H 2012 High Pow. Las. Part. Beam. 24 2915Google Scholar

    [21]

    Summa W J, Gullickson R L, Hebert M P, Rowley J E, Leon J F, Vitkovitsky I 1995 Pulsed Power Conference (New Mexico: Albuquerque)

    [22]

    Ware K D, Bell D E, Gullickson R L, Vitkovitsky I 2002 IEEE Trans. Plasma Sci. 30 1733Google Scholar

  • 图 1  多功能脉冲辐射系统结构示意图

    Figure 1.  Schematic diagram of multi-function pulsed radiation system.

    图 2  传输线结构及电场分布 (a) 传输线结构图; (b) 电场分布

    Figure 2.  Structure and electric field distribution of transmission line: (a) Structure of transmission line; (b) distribution of the electric field.

    图 3  脉冲功率驱动源和二极管的等效电路

    Figure 3.  Equivalent circuit of pulse power source and diode.

    图 4  电路模拟结果

    Figure 4.  Circuit simulation results.

    图 5  二极管结构及电场 (a)二极管结构; (b)二极管间隙电场

    Figure 5.  Structure and electric field distribution of diode: (a) Structure of diode; (b) distribution of the electric field.

    图 6  二极管间隙电子图像 (a)电子初始发射; (b)电子大面积均匀发射

    Figure 6.  Electron image of diode gap: (a) Initial emission; (b) large-area uniform emission.

    图 7  两种阴极结构及两种结构产生X射线的均匀性 (a)用于产生电子束的圆盘阴极; (b)用于产生X射线的双环阴极; (c)阳极靶后10 cm处由圆盘和圆环阴极产生X射线的均匀性

    Figure 7.  Two kinds of cathode structure and the uniformity of X-ray: (a) Disk cathode for electron beam; (b) double-ring cathode for X-ray; (c) uniformity of X-ray generated by disk and ring cathode at 10 cm behind the anode.

    图 8  轫致辐射产生的光子总能量随钽靶厚度的变化

    Figure 8.  Curve of photon energy by bremsstrahlung with tantalum target thickness.

    图 9  电子束流和总能量测量原理示意图

    Figure 9.  Schematic diagram of electron beam current and total energy measurement.

    图 10  基于PIN的能谱测量系统

    Figure 10.  Spectrometric system based on PIN.

    图 11  系统总体结构和测量探头布局

    Figure 11.  Structure and probe layout of the system.

    图 12  脉冲电子束状态的电压、电流、束流波形

    Figure 12.  Voltage, current and beam of pulsed electron beam.

    图 13  吸收体温度变化

    Figure 13.  Absorber temperature.

    图 14  能谱仪测得波形

    Figure 14.  Waveform measured by spectrometric system.

    图 15  计算得到PIN探测器中平均能量沉积

    Figure 15.  Energy deposition averaged over PIN detector by calculated.

    图 16  解谱得到的X射线能谱

    Figure 16.  X-ray spectrum by spectrum unfolding.

    图 17  剂量随半径分布

    Figure 17.  Distribution of dose with radius.

    图 18  辐射场内电子电流波形

    Figure 18.  Current in radiation field.

  • [1]

    王晶晶 2016 硕士学位论文 (杭州: 浙江大学)

    Wang J J 2016 M. S. Thesis (Hangzhou: Zhejiang University) (in Chinese)

    [2]

    王波, 刘海浪, 祁正伟, 张国培, 王小宇 2018 热加工工艺 47 19Google Scholar

    Wang B, Liu H L, Qi Z W, Zhang G P, Wang X Y 2018 Hot Working Technology 47 19Google Scholar

    [3]

    Ribiere M, Dortan F D G D, Delaunay R, Aubert D, Dalmeida T 2020 IEEE Trans. Nucl. Sci. 67 1722Google Scholar

    [4]

    Higgins D F, Lee K S H, Marin L 1978 IEEE Trans. Antennas Propag. 26 14Google Scholar

    [5]

    Chen J, Wang J, Tao Y, Chen Z, Wang Y, Niu S 2019 IEEE Trans. Nucl. Sci. 66 820Google Scholar

    [6]

    刘锡三 2007 高功率脉冲技术(北京: 国防工业出版社) 第178−183页

    Liu X S 2007 High Pulsed Power Technology (Beijing: National Defense Industry Press) pp178−183 (in Chinese)

    [7]

    邱爱慈 2016 脉冲功率技术应用 (西安: 陕西科学出版社) 第39页

    Qiu A C 2016 Pulsed Power Technology Application (Xi’an: Shaanxi Science and Technology Press) p39 (in Chinese)

    [8]

    吴治华 1997 原子核物理实验方法 (北京: 原子能出版社) 第49页

    Wu Z H 1997 Experimental methods of nuclear physics (Beijing: Atomic Energy Press) p49 (in Chinese)

    [9]

    何辉, 禹海军, 王毅, 戴文华 2019 强激光与粒子束 31 125102Google Scholar

    He H, Yu H J, Wang Y, Dai W H 2019 High Pow. Las. Part. Beam. 31 125102Google Scholar

    [10]

    Manciu M, Manciu F S, Teodor V, Nes E, Waggener R G 2009 J. X-Ray Sci. Technol. 17 85Google Scholar

    [11]

    欧阳晓平, 李真富, 张国光, 霍裕昆, 张前美, 张显鹏, 宋献才, 贾焕义, 雷建华, 孙远程 2002 物理学报 51 1502Google Scholar

    Ouyang X P, Li Z F, Zhang G G, Huo Y K, Zhang Q M, Zhang X P, Song X C, Jia H Y, Lei J H, Sun Y C 2002 Acta Phys. Sin. 51 1502Google Scholar

    [12]

    苏兆锋, 来定国, 邱孟通, 任书庆, 徐启福, 杨实 2020 强激光与粒子束 32 035005Google Scholar

    Su Z F, Lai D G, Qiu M T, Ren S Q, Xu Q F, Yang S 2020 High Pow. Las. Part. Beam. 32 035005Google Scholar

    [13]

    苏兆锋, 杨海亮, 邱爱慈, 孙剑锋, 丛培天, 王亮平, 雷天时, 韩娟娟 2010 物理学报 59 7729Google Scholar

    Su Z F, Yang H L, Qiu A C, Sun J F, Cong P T, Wang L P, Lei T S, Han J J 2010 Acta Phys. Sin. 59 7729Google Scholar

    [14]

    Baird L C 1981 Med. Phys. 8 319Google Scholar

    [15]

    Waggener R G, Blough M M, Terry J A, Chen D, Lee N E, Zhang S, McDavid W D 1999 Med. Phys. (Lancaster) 26 1269Google Scholar

    [16]

    来定国, 张永民, 李进玺, 苏兆峰, 张玉英, 任书庆, 杨莉, 杨实 2013 强激光与粒子束 25 1396Google Scholar

    Lai D G, Zhang Y M, Li J X, Su Z F, Zhang Y Y, Ren S Q, Yang L, Yang S 2013 High Pow. Las. Part. Beam. 25 1396Google Scholar

    [17]

    Meng C, Xu Z, Jiang Y, Zheng W, Dang Z 2017 IEEE Trans. Nucl. Sci. 10 2618Google Scholar

    [18]

    Xu Z, Meng C, Jiang Y, Wu P 2020 IEEE Trans. Nucl. Sci. 67 425Google Scholar

    [19]

    周开明, 王艳, 邓建红 2014 强激光与粒子束 26 073207Google Scholar

    Zhou K M, Wang Y, Deng J H 2014 High Pow. Las. Part. Beam. 26 073207Google Scholar

    [20]

    马良, 程引会, 吴伟, 李进玺, 朱梦, 李宝忠, 赵墨, 郭景海 2012 强激光与粒子束 24 2915Google Scholar

    Ma L, Cheng Y H, Wu W, Li J X, Zhu M, Li B Z, Zhao M, Guo J H 2012 High Pow. Las. Part. Beam. 24 2915Google Scholar

    [21]

    Summa W J, Gullickson R L, Hebert M P, Rowley J E, Leon J F, Vitkovitsky I 1995 Pulsed Power Conference (New Mexico: Albuquerque)

    [22]

    Ware K D, Bell D E, Gullickson R L, Vitkovitsky I 2002 IEEE Trans. Plasma Sci. 30 1733Google Scholar

  • [1] Wang Jing-Li, Dong Xian-Chao, Yin Liang, Yang Zhi-Xiong, Wan Hong-Dan, Chen He-Ming, Zhong Kai. Vanadium dioxide based terahertz dual-frequency multi-function coding metasurface. Acta Physica Sinica, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [2] Zhang Hong-Yan, Bao Li-Hong, Chao Luo-Meng, Zhao Feng-Qi, Liu Zi-Zhong. Optical absorption and thermionic emission mechanism of multi-functional La1–x Srx B6 hexaborides. Acta Physica Sinica, 2021, 70(21): 214204. doi: 10.7498/aps.70.20211069
    [3] Liu Zhen-Bang, Jin Xiao, Huang Hua, Wang Teng-Fang, Li Shi-Feng. Optimal design and experimental research of several-gigawatt multiple electron beam diode. Acta Physica Sinica, 2021, 70(3): 038401. doi: 10.7498/aps.70.20201336
    [4] Li Hai-Peng, Wu Xiao, Ding Hai-Yang, Xin Ke-Wei, Wang Guang-Ming. Wideband circularly-polarized bifunction devices employing composite metasurfaces. Acta Physica Sinica, 2021, 70(2): 027803. doi: 10.7498/aps.70.20201150
    [5] Zhou Yao-Yao, Liu Yan-Hong, Yan Zhi-Hui, Jia Xiao-Jun. A multifunctional quantum teleportation network. Acta Physica Sinica, 2021, 70(10): 104203. doi: 10.7498/aps.70.20201749
    [6] Tang Wen-Xin, Hao Rong-Hui, Chen Fu, Yu Guo-Hao, Zhang Bao-Shun. p-GaN hybrid anode AlGaN/GaN diode with 1000 V operation. Acta Physica Sinica, 2018, 67(19): 198501. doi: 10.7498/aps.67.20181208
    [7] Zhao Hong-Yu, Wang Di, Wei Zhi, Jin Guang-Yong. Finite element analysis and experimental study on electrical damage of silicon photodiode induced by millisecond pulse laser. Acta Physica Sinica, 2017, 66(10): 104203. doi: 10.7498/aps.66.104203
    [8] Liu Xue, Ran Xian-Wen, Xu Zhi-Hong, Tang Wen-Hui. Equivalence of energy deposition profile in target between electron beam of multi-energy composite spectrum and X-ray. Acta Physica Sinica, 2017, 66(2): 025202. doi: 10.7498/aps.66.025202
    [9] Guo Chun-Sheng, Wang Lin, Zhai Yu-Wei, Li Rui, Feng Shi-Wei, Zhu Hui. Bending phenomenon of temperature calibration curve in junction temperature measurement by the high transient current. Acta Physica Sinica, 2015, 64(18): 184704. doi: 10.7498/aps.64.184704
    [10] Wang Tian-Shu, Zhang Rui-De, Guan Zhe, Ba Ke, Zu Yun-Xiao. Properties of memristor in RLC circuit and diode circuit. Acta Physica Sinica, 2014, 63(17): 178101. doi: 10.7498/aps.63.178101
    [11] Zuo Ying-Hong, Wang Jian-Guo, Fan Ru-Yu. Influence of diode gap distance on space charge effects in field emission. Acta Physica Sinica, 2012, 61(21): 215202. doi: 10.7498/aps.61.215202
    [12] Yan Chun-Yan, Zhang Qiu-Ju, Luo Mu-Hua. Generation of attosecond X-ray pulse in the interaction between the pulses and the relativistic electrons. Acta Physica Sinica, 2011, 60(3): 035202. doi: 10.7498/aps.60.035202
    [13] Wang Xiu-Mei, He Ji-Zhou, He Xian, Xiao Yu-Ling. Performance characteristics of an irreversible engine consisting of nonlinear diodes system. Acta Physica Sinica, 2010, 59(7): 4460-4465. doi: 10.7498/aps.59.4460
    [14] Song Xiao-Lu, Guo Zhen, Li Bing-Bin, Wang Shi-Yu, Cai De-Fang, Wen Jian-Guo. Time-varying thermal effect of laser crystal in pulsed diode laser side-pumped Nd∶YAG laser. Acta Physica Sinica, 2009, 58(3): 1700-1708. doi: 10.7498/aps.58.1700
    [15] Zhang Yong-Hui, Chang An-Bi, Xiang Fei, Song Fa-Lun, Kang Qiang, Luo Min, Li Ming-Jia, Gong Sheng-Gang. Repetition rate of intense current electron-beam diodes using 20 GW pulsed source. Acta Physica Sinica, 2007, 56(10): 5754-5757. doi: 10.7498/aps.56.5754
    [16] Sun Ke-Xu, Jiang Shao-En, Yi Rong-Qing, Cui Yan-Li, Ding Yong-Kun, Liu Shen-Ye. Research on time characteristics of soft X-ray diode. Acta Physica Sinica, 2006, 55(1): 68-75. doi: 10.7498/aps.55.68
    [17] Zhang Yong-Hui, Ma Qiao-Sheng, Xiang Fei, Gan Yan-Qing, Chang An-Bi, Liu Zhong, Zhou Chuan-Ming. Transmission technigue of repetition pulse and intense current electron-beam. Acta Physica Sinica, 2005, 54(7): 3111-3115. doi: 10.7498/aps.54.3111
    [18] Liu Zhi-Jian, Jiang Xing-Liu, Le Xiao-Yun, Wen Xiong-Wei. Analysis of pseudospark pulsed electron beam shape in transmission. Acta Physica Sinica, 2005, 54(9): 4229-4235. doi: 10.7498/aps.54.4229
    [19] Liu Lu, Fan Guang-Han, Liao Chang-Jun, Cao Ming-De, Chen Gui-Chu, Chen Lian-Hui. Graded heterojunction in AlGaInP compound semiconductors and its application to HB-LED. Acta Physica Sinica, 2003, 52(5): 1264-1271. doi: 10.7498/aps.52.1264
    [20] Lü Hong-Liang, Zhang Yi-Men, Zhang Yu-Ming. The simulation study of the tunneling effect in the breakdown of 4H-SiC pn junc tion diode. Acta Physica Sinica, 2003, 52(10): 2541-2546. doi: 10.7498/aps.52.2541
Metrics
  • Abstract views:  4181
  • PDF Downloads:  53
  • Cited By: 0
Publishing process
  • Received Date:  29 March 2021
  • Accepted Date:  24 May 2021
  • Available Online:  05 October 2021
  • Published Online:  20 October 2021

/

返回文章
返回