Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnO varistors with low leakage current and high stability arrester with Ga doping

Liu Dong-Ji Ma Yuan-Yuan He Jin-Bai Wang Hao Zhou Yuan-Xiang Sun Guan-Yue Zhao Hong-Feng

Citation:

ZnO varistors with low leakage current and high stability arrester with Ga doping

Liu Dong-Ji, Ma Yuan-Yuan, He Jin-Bai, Wang Hao, Zhou Yuan-Xiang, Sun Guan-Yue, Zhao Hong-Feng
PDF
HTML
Get Citation
  • The insulation level of power equipment in power system is based on the overvoltage protection level of metal oxide arrester represented by zinc oxide valve blade. Owing to its superior nonlinear voltage current characteristics and surge energy absorption capacity, ZnO varistor is widely used as the core component of power system arrester. The electrical characteristics of ZnO varistors are determined by their complex microstructures and grain boundary characteristics. Therefore, to further improve the insulation level of power grid equipment, doping is required to further improve the grain boundary characteristics of ZnO varistors. In order to obtain more stable ZnO varistors, the stability characteristics of Ga doped ZnO varistors are investigated. The microstructural and electrical characteristics of the obtained experimental samples are tested by scanning electron microscope, voltage current nonlinear characteristics, capacitance voltage characteristics, X-ray diffraction spectrum, energy spectrum scanning, dielectric loss, and AC acceleration aging. The experimental results show that with the further increase of gallium doping, gallium ions occupy the vacancies on the zinc oxide lattice, increasing the interface state density, and improving the Schottky barrier height. On the one hand, the leakage current density of ZnO varistor is reduced, on the other hand, the migration of free electrons in the depletion layer is suppressed, and the stability of ZnO varistor in the high charge rate environment is improved. Aluminum ions are dissolved into the ZnO lattice to generate a large number of free electrons, thereby reducing the resistivity of ZnO grains, which can effectively reduce the residual voltage ratio of ZnO varistor when large current passes through it. When the doping amount of Ga reaches 0.6%, the leakage current is 0.84 μA/cm2, the residual voltage ratio is 1.97, the nonlinear coefficient is 66, and the Schottky barrier height is 1.81 eV. At 115 ℃, AC accelerated aging voltages of 87% E1 mA, 89% E1 mA and 91% E1 mA are applied to the test sample separately. The aging time is 1000 h, and the aging coefficients are 0.394, 0.437 and 0.550 separately. This research will help to further improve the protection level of zinc oxide surge arresters, achieving the deep limitation of grid overvoltage, and improving the security and stability of power systems.
      Corresponding author: Liu Dong-Ji, liudj19@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51777162)
    [1]

    Gupta T K 1990 J. Am. Ceram. Soc. 73 1817Google Scholar

    [2]

    姚睿丰, 王妍, 高景晖, 陈川, 郭经红 2021 电工技术学报 36 1324

    Yao R F, Wang Y, Gao J H, Chen C, Guo J H 2021 Trans. Chin. Elc. Soc. 36 1324

    [3]

    王玉平, 孙西昌 2006 电气技术 36 35Google Scholar

    Wang Y P, Sun X C 2006 Elc. Tchnol. 36 35Google Scholar

    [4]

    舒印彪 2016 中国经贸导刊 34 54Google Scholar

    Shu Y B 2016 Chni. Eco. Tra. Her. 34 54Google Scholar

    [5]

    李振, 余占清, 何金良, 彭向阳, 李志锋 2011 高电压技术 37 3120

    Li Z, Yu Z Q, He J L, Peng X Y, Li Z F 2011 High Voltage Eng. 37 3120

    [6]

    Lu Z Y, Chen Z Y, Wu J Q 2009 J. Ceram. Soc. Jpn. 117 851Google Scholar

    [7]

    Tominaga S, Shibuya Y, Fujiwara Y, Imataki M, Nitta T 1980 IEEE Trans. Power. Syst. 99 1548

    [8]

    Zhao H F, He J L, Hu J, Chen S M, Xie Q Y 2016 J. Mater. Lett. 164 80Google Scholar

    [9]

    Meng P F, Gu S Q, Wang J, Hu J, He J L 2018 J. Ceram. Int. 44 1168Google Scholar

    [10]

    Gupta T K, Carlson W G 1985 J. Mater. Sci. 20 3487Google Scholar

    [11]

    Eda K, Iga A, Matsuoka M 1980 J. Appl. Phys. 51 2678Google Scholar

    [12]

    万帅, 许衡, 席成圆, 孟鹏飞, 赵洪峰, 曹伟 2020 高电压技术 46 1434

    Wan S, Xu H, Xi C Y, Meng P F, Zhao H F, Cao W 2020 High Voltage Eng. 46 1434

    [13]

    Zhao H F, Hu J, Chen S M, Xie Q Y, He J L 2016 J. Ceram. Int. 42 5582Google Scholar

    [14]

    Wurst J C, Nelson I A 1972 J. Am. Ceram. Soc. 97 109

    [15]

    Wang H Z, Li G Q, Wang G B, Peng J C, Jiang H, Liu Y T 2017 Appl. Energ. 188 56Google Scholar

    [16]

    Kim S S, Cho H G, Choi I S, Park T G, Jung S Y 2002 International Conference on Power System Technology Proceedings Kunming, China, October 13–17, 2002 p13

    [17]

    IEC60099-4 2006 Matel Oxide Arresters without Gapless for a.c. Systems (Swithzerlan: Geneva)

    [18]

    Bueno P R, Cassia-Santos D E M R, Leite E R, Longo L, Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F 2000 J. Appl. Phys. 88 6545Google Scholar

    [19]

    Long W C, Hu J, He J L 2010 J. Matter. Lett. 64 1081Google Scholar

    [20]

    程 宽, 赵洪峰, 周远翔 2022 电工技术学报 37 3413

    Cheng K, Zhao H F, Zhou Y X 2022 Trans. Chin. Elc. Soc. 37 3413

    [21]

    GB/T11032–2010 中华人民共和国国家标准交流无间隙金属氧化物避雷器 (北京: 中国标准出版社)

    GB11032—2010 Metal-oxide Surge Arresters without Gaps for ac Systems (Beijing: China Standard Press) (in Chinese)

    [22]

    Cheng L H, Yuan K Y, Meng L, Zheng L Y 2012 J. Am. Ceram. Soc. 95 1004

    [23]

    李天娇, 张博, 乌江 2022 电工技术学报 37 1554

    Li T J, Zhang B, Wu J 2022 Trans. Chin. Elc. Soc. 37 1554

    [24]

    孟鹏飞, 胡军, 邬锦波, 何金良 2018 高电压技术 44 241

    Meng P F, Hu J, Wu J B, He J L 2018 High Voltage Eng. 44 241

    [25]

    刘向洋 2018 硕士学位论文 (郑州: 中原工学院)

    Liu X Y 2012 M. S. Thesis (Zhengzhou: Zhongyuan University of Technology) (in Chinese)

    [26]

    Gupta T K 1994 J. Mater. Res. 9 2213Google Scholar

    [27]

    Jaroszewski M, Pospieszna J 2004 International Conference on Solid Dieliectrics Toulouse, France, July 5–9, 2004 p731

    [28]

    孟鹏飞, 胡军, 邬锦波, 何金良 2017 中国电机工程学报 37 7377

    Meng P F, Hu J, Wu J B, He J L 2017 Chin. Soc. Elec. Eng. 37 7377

    [29]

    Casro M S, Benavente M A, Aldao C M 1993 J. Appl. Phys. 5 A341

  • 图 1  不同Ga3+离子掺杂量下ZnO压敏电阻SEM 显微结构

    Figure 1.  SEM images of the ZnO varistor samples prepared with various Ga3+ contents.

    图 2  Zn, Bi, Al, Ga元素在 ZnO 压敏电阻微观结构中的分布 (a) 测量路径; (b) 典型元素的分布强度

    Figure 2.  Distribution of Zn, Bi, Al, Ga in the microstructure of ZnO varistor sample: (a) The measurement path; (b) the intensity of typical elements.

    图 3  老化前(a), (b)和老化后(c), (d)样品的E-J特性图

    Figure 3.  E-J characteristic curves of samples before aging (a), (b) and after aging (c), (d).

    图 4  ZnO压敏电阻老化前(a)和老化后(b) C-V特性曲线

    Figure 4.  C-V characteristic curves of ZnO varistor before aging (a) and after aging (b).

    图 5  ZnO压敏电阻的介质损耗变化曲线

    Figure 5.  Dielectric loss variation curves of ZnO Varistor

    图 6  ZnO阀片在不同荷电率下的交流加速老化曲线

    Figure 6.  AC acceleration aging curves of ZnO valve under different charge rates.

    图 7  不同Ga掺杂的ZnO 压敏电阻XRD图谱

    Figure 7.  XRD patterns of the ZnO varistor samples with various Ga dopant contents.

    表 1  老化前后ZnO压敏电阻的微观结构和宏观电气参数

    Table 1.  Microstructure and macro electrical parameters of ZnO varistors before and after aging.

    样品编号Ga content/%d/μmE1 mA/(V·mm–1)JL/(μA·cm–2)αNd/(1023 m–3)Ni/(1016 m–2)$ {\phi _{\text{b}}} $/eVKKt


    #108.2373.11.76540.871.401.452.35
    #20.27.9423.21.34570.921.511.602.17
    #30.47.7440.40.89631.071.641.621.99
    #40.67.4454.40.84661.131.781.811.97
    #50.87.3478.51.12611.251.751.582.14


    #4-87%436.31.12611.261.771.600.394
    变化率–3.98%33.30%–7.60%11.50%–0.56%–11.60%
    #4-89%427.21.15581.291.741.510.437
    变化率–5.99%36.90%–12.10%14.16%–2.25%–16.57%
    #4-91%418.11.23551.341.691.380.550
    变化率–7.99%46.40%–16.70%18.58%–5.06%–23.76%
    DownLoad: CSV
  • [1]

    Gupta T K 1990 J. Am. Ceram. Soc. 73 1817Google Scholar

    [2]

    姚睿丰, 王妍, 高景晖, 陈川, 郭经红 2021 电工技术学报 36 1324

    Yao R F, Wang Y, Gao J H, Chen C, Guo J H 2021 Trans. Chin. Elc. Soc. 36 1324

    [3]

    王玉平, 孙西昌 2006 电气技术 36 35Google Scholar

    Wang Y P, Sun X C 2006 Elc. Tchnol. 36 35Google Scholar

    [4]

    舒印彪 2016 中国经贸导刊 34 54Google Scholar

    Shu Y B 2016 Chni. Eco. Tra. Her. 34 54Google Scholar

    [5]

    李振, 余占清, 何金良, 彭向阳, 李志锋 2011 高电压技术 37 3120

    Li Z, Yu Z Q, He J L, Peng X Y, Li Z F 2011 High Voltage Eng. 37 3120

    [6]

    Lu Z Y, Chen Z Y, Wu J Q 2009 J. Ceram. Soc. Jpn. 117 851Google Scholar

    [7]

    Tominaga S, Shibuya Y, Fujiwara Y, Imataki M, Nitta T 1980 IEEE Trans. Power. Syst. 99 1548

    [8]

    Zhao H F, He J L, Hu J, Chen S M, Xie Q Y 2016 J. Mater. Lett. 164 80Google Scholar

    [9]

    Meng P F, Gu S Q, Wang J, Hu J, He J L 2018 J. Ceram. Int. 44 1168Google Scholar

    [10]

    Gupta T K, Carlson W G 1985 J. Mater. Sci. 20 3487Google Scholar

    [11]

    Eda K, Iga A, Matsuoka M 1980 J. Appl. Phys. 51 2678Google Scholar

    [12]

    万帅, 许衡, 席成圆, 孟鹏飞, 赵洪峰, 曹伟 2020 高电压技术 46 1434

    Wan S, Xu H, Xi C Y, Meng P F, Zhao H F, Cao W 2020 High Voltage Eng. 46 1434

    [13]

    Zhao H F, Hu J, Chen S M, Xie Q Y, He J L 2016 J. Ceram. Int. 42 5582Google Scholar

    [14]

    Wurst J C, Nelson I A 1972 J. Am. Ceram. Soc. 97 109

    [15]

    Wang H Z, Li G Q, Wang G B, Peng J C, Jiang H, Liu Y T 2017 Appl. Energ. 188 56Google Scholar

    [16]

    Kim S S, Cho H G, Choi I S, Park T G, Jung S Y 2002 International Conference on Power System Technology Proceedings Kunming, China, October 13–17, 2002 p13

    [17]

    IEC60099-4 2006 Matel Oxide Arresters without Gapless for a.c. Systems (Swithzerlan: Geneva)

    [18]

    Bueno P R, Cassia-Santos D E M R, Leite E R, Longo L, Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F 2000 J. Appl. Phys. 88 6545Google Scholar

    [19]

    Long W C, Hu J, He J L 2010 J. Matter. Lett. 64 1081Google Scholar

    [20]

    程 宽, 赵洪峰, 周远翔 2022 电工技术学报 37 3413

    Cheng K, Zhao H F, Zhou Y X 2022 Trans. Chin. Elc. Soc. 37 3413

    [21]

    GB/T11032–2010 中华人民共和国国家标准交流无间隙金属氧化物避雷器 (北京: 中国标准出版社)

    GB11032—2010 Metal-oxide Surge Arresters without Gaps for ac Systems (Beijing: China Standard Press) (in Chinese)

    [22]

    Cheng L H, Yuan K Y, Meng L, Zheng L Y 2012 J. Am. Ceram. Soc. 95 1004

    [23]

    李天娇, 张博, 乌江 2022 电工技术学报 37 1554

    Li T J, Zhang B, Wu J 2022 Trans. Chin. Elc. Soc. 37 1554

    [24]

    孟鹏飞, 胡军, 邬锦波, 何金良 2018 高电压技术 44 241

    Meng P F, Hu J, Wu J B, He J L 2018 High Voltage Eng. 44 241

    [25]

    刘向洋 2018 硕士学位论文 (郑州: 中原工学院)

    Liu X Y 2012 M. S. Thesis (Zhengzhou: Zhongyuan University of Technology) (in Chinese)

    [26]

    Gupta T K 1994 J. Mater. Res. 9 2213Google Scholar

    [27]

    Jaroszewski M, Pospieszna J 2004 International Conference on Solid Dieliectrics Toulouse, France, July 5–9, 2004 p731

    [28]

    孟鹏飞, 胡军, 邬锦波, 何金良 2017 中国电机工程学报 37 7377

    Meng P F, Hu J, Wu J B, He J L 2017 Chin. Soc. Elec. Eng. 37 7377

    [29]

    Casro M S, Benavente M A, Aldao C M 1993 J. Appl. Phys. 5 A341

  • [1] Liu Tai-Qi, Chen Shao-Yong, Mou Mao-Lin, Tang Chang-Jian. Theoretical study of effect of hyper-resistivity on linear stability of ballooning mode. Acta Physica Sinica, 2023, 72(14): 145201. doi: 10.7498/aps.72.20230308
    [2] Li Ya-Sha, Liu Shi-Chong, Liu Qing-Dong, Xia Yu, Hu Huo-Ran, Li Guang-Zhu. Electrical properties of ZnO/${\boldsymbol{\beta}} $-Bi2O3 interfaces featuring aggregation defect under external electric fields. Acta Physica Sinica, 2022, 71(2): 026801. doi: 10.7498/aps.71.20210635
    [3] Research on electrical properties of ZnO/β-Bi2O3 interfaces featuring aggregation defect within external electric fields. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210635
    [4] Zhang Deng-Kui, Zhao Jin-Liang, Zhang Hong-Guo, Yue Ming. Study on the hydrogenation properties and stability of LaFe11.5Si1.5 compound. Acta Physica Sinica, 2014, 63(19): 197501. doi: 10.7498/aps.63.197501
    [5] Li Hong-Xia, Chen Xue-Ping, Chen Qi, Mao Qi-Nan, Xi Jun-Hua, Ji Zhen-Guo. Effects of bottom electrode on resistive switching characteristics of ZnO films. Acta Physica Sinica, 2013, 62(7): 077202. doi: 10.7498/aps.62.077202
    [6] Zhang Xi, Bao Bo-Cheng, Wang Jin-Ping, Ma Zheng-Hua, Xu Jian-Ping. Stability analysis of equivalent series resistance of output capacitor in fixed off-time controlled Buck converter. Acta Physica Sinica, 2012, 61(16): 160503. doi: 10.7498/aps.61.160503
    [7] Zheng Shu-Wen, Fan Guang-Han, Li Shu-Ti, Zhang Tao, Su Chen. Energy band properties and phase stability of Be1-xMgxO alloy. Acta Physica Sinica, 2012, 61(23): 237101. doi: 10.7498/aps.61.237101
    [8] Cao Gong-Xun, Zhang Xiao-Qing, Sun Zhuan-Lan, Wang Xue-Wen, Lou Ke-Xing, Xia Zhong-Fu. Thermal stability and charge dynamics of piezoelectrets with tailored micro-structure. Acta Physica Sinica, 2010, 59(9): 6514-6520. doi: 10.7498/aps.59.6514
    [9] Wang Zhi-Gang, Zhang Yang, Wen Yu-Hua, Zhu Zi-Zhong. First-principles calculation of structural stability and electronic properties of ZnO atomic chains. Acta Physica Sinica, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [10] Mei Long-Wei, Zhang Zhen-Hua, Ding Kai-He. Analysis on the stability of the electronic transport properties of single-walled carbon nanotubes. Acta Physica Sinica, 2009, 58(3): 1971-1979. doi: 10.7498/aps.58.1971
    [11] Yang Xin-Sheng, Zhao Yong. The study of ZnO varistor doped with ferromagnetic manganese oxide. Acta Physica Sinica, 2008, 57(5): 3188-3192. doi: 10.7498/aps.57.3188
    [12] Shan Xiao-Nan, Huang Ru, Li Yan, Cai Yi-Mao. Thermal stability of electrical characteristics of nickel silicide metal gate. Acta Physica Sinica, 2007, 56(8): 4943-4949. doi: 10.7498/aps.56.4943
    [13] Lü Zhi-Wei, Wang Xiao-Hui, Lin Dian-Yang, Wang Chao, Zhao Xiao-Yan, Tang Xiu-Zhang, Zhang Hai-Feng, Shan Yu-Sheng. A study on the stability of stimulated Brillouin scattering for KrF laser. Acta Physica Sinica, 2003, 52(5): 1184-1189. doi: 10.7498/aps.52.1184
    [14] LIU PENG, YANG TONG-QING, WANG ZHI-HONG, XU ZHUO, ZHANG LIANG-YING, YAO XI. INVESTIGATION OF ELECTRIC FIELD-INDUCED ANTIFERROELECTRIC TO FERROELECTRIC PHASE TRANSITION AND PHASE STABILITY OF PLZST CERAMICS. Acta Physica Sinica, 1998, 47(10): 1727-1733. doi: 10.7498/aps.47.1727
    [15] FANG RUI-YI, YU YING-LEI, CHEN TING-YONG, DAI DAO-SHENG. MAGNETORESISTANCE,COERCIVITY AND STABILITY FOR THE SPIN VALVE [NiFe/Cu/Co/Cu] MULTILAYERS. Acta Physica Sinica, 1997, 46(9): 1841-1848. doi: 10.7498/aps.46.1841
    [16] SHI BING-REN, SUI GUO-FANG, GUO GAN-CHENG. STABILITY ANALYSIS OF TOKAMAK RESISTIVE INTERNAL KINK MODE IN ION KINETIC REGIME. Acta Physica Sinica, 1996, 45(5): 801-810. doi: 10.7498/aps.45.801
    [17] Lü Man-qi, A. WAGENDRISTEL. TEMPERATURE DEPENDENCE OF ELECTRIC RESISTIVITY OF Nd-Fe AMORPHOUS THIN FILMS AND ITS THERMAL STABILITY. Acta Physica Sinica, 1993, 42(5): 840-846. doi: 10.7498/aps.42.840
    [18] WANG WEI, YAO XI-XIAN. STATIC CHARACTERISTICS OF CIRCULAR SYMMETRIC ANNULAR JOSEPHSON JUNCTION (Ⅱ)——THE STABILITY OF THE SOLUTIONS OF THE SELF-FIELD EQUATIONS. Acta Physica Sinica, 1988, 37(5): 714-719. doi: 10.7498/aps.37.714
    [19] LI YAN-MIN, K. A. CHAO. ENERGY BANDS, STABILITY AND THERMODYNAMIC PROPERTIES OF BIPOLARONS. Acta Physica Sinica, 1984, 33(2): 273-276. doi: 10.7498/aps.33.273
    [20] MA TENG-CAI, GONG YE. RESISTIVE FLUID INSTABILITY AT THE NONMONOTONOUS CURRENT PROFILE. Acta Physica Sinica, 1984, 33(8): 1112-1119. doi: 10.7498/aps.33.1112
Metrics
  • Abstract views:  3851
  • PDF Downloads:  71
  • Cited By: 0
Publishing process
  • Received Date:  21 November 2022
  • Accepted Date:  19 December 2022
  • Available Online:  18 January 2023
  • Published Online:  20 March 2023

/

返回文章
返回