-
A novel mm-wave high power microwave device, the ridge-loaded folded waveguide traveling wave tube (TWT), is presented and its linear gain properties are investigated. The perturbed dispersion equation is derived and the small signal growth rate is calculated for different dimensions of ridge and parameters of electron beam. For a cold beam, the linear theory predicts a gain of 1.15 dB/period and a 3-dB small-signal gain bandwidth of 18.51% in Kα-band. The investigation reveals that, with the same beam parameters, the novel slow-wave structure (SWS) has advantage over the folded waveguide SWS in its gain and efficiency. The dimensions of ridge and the beam current may be increased in order to raise the gain.
-
Keywords:
- millimeter wave /
- folded waveguide /
- ridge-loaded /
- small signal gain
[1] Liao F J 1999 Vacuum electronics technology-the key component of information equipment (Beijing: National defense industry Press) p10—98 (in Chinese) [廖复疆 1999 真空电子技术—信息装备的心脏 (北京:国防工业出版社) 第10—98页]
[2] Wei Y Y, Wang W X, Gong Y B, Zhou P 2000 Acta Phys.Sin. 49 949 (in Chinese) [魏彦玉、王文祥、宫玉彬、周 鹏 2000 物理学报 49 949]
[3] Wei Y Y, Wang W X, Sun J H, Liu S G 2002 Chin. Phys. 11 277
[4] Lu Z G, Gong Y B, Wei Y Y, Wang W X 2006 Chin. Phys. 15 2661
[5] Li J Q, Mo Y L 2006 Acta Phys.Sin. 55 4117 (in Chinese)[李建清、莫元龙 2006 物理学报 55 4117]
[6] Bhattacharjee S, Booske J H, Kory C L, Weide D W, Limbach S, Gallagher S, Welter J D, Lopez M R, Gilgenbach R M, Ives R L, Read M E, Divan R, Mancini D C 2004 IEEE Trans. Plasma Science 32 1002
[7] Kory C L, Booske J H, Lee W J, Gallagher S, Weide D W, Limbach S, Bhattacharjee S 2002 IEEE MIT-S Digest 1265—1268
[8] Young H N, Sang W C, Jin J C 2002 IEEE Trans. Plasma Sci. 30 1017
[9] Booske J H, Converse M C, Kory C L, Chevalier C T, Gallagher D A, Kreischer K E, Heinen V O, Bhattacharjee S 2005 IEEE Trans. Electron Devices 52 685
[10] Han S T, Jang K H, So J K, Kim J, Shin Y M, Ryskin N M, Chang S S, Park G S 2004 IEEE Trans. Plasma Sci. 32 60
[11] McVey B D, Basten M A, Booske J H, Scharer J E 1994 IEEE Trans. Microw. Theory Tech. 42 995
[12] Joe J, Scharer J E, Booske J H, Basten M A 1997 Phys. Plasma 4 2707
[13] Henoch B T 1958 J. Appl. Phys. 18 1
[14] Neil V K, Heckrotte W 1963 J. Appl. Phys. 36 2761
[15] Lau Y Y 1982 IEEE Trans. Electron Devices 29 320
[16] Ganguly A K, Choi J J, Armstrong C M 1995 IEEE Trans. Electron Devices 42 348
-
[1] Liao F J 1999 Vacuum electronics technology-the key component of information equipment (Beijing: National defense industry Press) p10—98 (in Chinese) [廖复疆 1999 真空电子技术—信息装备的心脏 (北京:国防工业出版社) 第10—98页]
[2] Wei Y Y, Wang W X, Gong Y B, Zhou P 2000 Acta Phys.Sin. 49 949 (in Chinese) [魏彦玉、王文祥、宫玉彬、周 鹏 2000 物理学报 49 949]
[3] Wei Y Y, Wang W X, Sun J H, Liu S G 2002 Chin. Phys. 11 277
[4] Lu Z G, Gong Y B, Wei Y Y, Wang W X 2006 Chin. Phys. 15 2661
[5] Li J Q, Mo Y L 2006 Acta Phys.Sin. 55 4117 (in Chinese)[李建清、莫元龙 2006 物理学报 55 4117]
[6] Bhattacharjee S, Booske J H, Kory C L, Weide D W, Limbach S, Gallagher S, Welter J D, Lopez M R, Gilgenbach R M, Ives R L, Read M E, Divan R, Mancini D C 2004 IEEE Trans. Plasma Science 32 1002
[7] Kory C L, Booske J H, Lee W J, Gallagher S, Weide D W, Limbach S, Bhattacharjee S 2002 IEEE MIT-S Digest 1265—1268
[8] Young H N, Sang W C, Jin J C 2002 IEEE Trans. Plasma Sci. 30 1017
[9] Booske J H, Converse M C, Kory C L, Chevalier C T, Gallagher D A, Kreischer K E, Heinen V O, Bhattacharjee S 2005 IEEE Trans. Electron Devices 52 685
[10] Han S T, Jang K H, So J K, Kim J, Shin Y M, Ryskin N M, Chang S S, Park G S 2004 IEEE Trans. Plasma Sci. 32 60
[11] McVey B D, Basten M A, Booske J H, Scharer J E 1994 IEEE Trans. Microw. Theory Tech. 42 995
[12] Joe J, Scharer J E, Booske J H, Basten M A 1997 Phys. Plasma 4 2707
[13] Henoch B T 1958 J. Appl. Phys. 18 1
[14] Neil V K, Heckrotte W 1963 J. Appl. Phys. 36 2761
[15] Lau Y Y 1982 IEEE Trans. Electron Devices 29 320
[16] Ganguly A K, Choi J J, Armstrong C M 1995 IEEE Trans. Electron Devices 42 348
Catalog
Metrics
- Abstract views: 7961
- PDF Downloads: 965
- Cited By: 0