Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

False-color terahertz imaging system based on terahertz time domain spectrocsopy

Lu Wen-Liang Lou Shu-Qin Wang Xin Shen Yan Sheng Xin-Zhi

Citation:

False-color terahertz imaging system based on terahertz time domain spectrocsopy

Lu Wen-Liang, Lou Shu-Qin, Wang Xin, Shen Yan, Sheng Xin-Zhi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Based on terahertz time domain spectroscopy, a false-color imaging system is demonstrated by experiments. Three frequency ranges are defined as color ranges for three primary colors (red, green and blue). The mixture of the spectral integral values in each color range presents the final color of each pixel on the false-color THz image. Since the absorption frequencies of different materials are different, the spectral integral values in defined ranges are different, leading to different color on the false-color THz image. The false-color THz images of two kinds of white powder which are lactose and 4-aminobenzonic acid are obtained from the imaging system with two different definitions of color ranges. From the first color range definition, the absorption frequency of lactose lies in the green range, so only the green light is absorbed, and the color of lactose is magenta. In the meanwhile, there are two absorption frequencies for 4-aminobenzonic acid lying in the green and blue ranges, so both green and blue light are absorbed, and the color of 4-aminobenzonic acid is red. They can be told easily by different colors on the false-color THz image. From the second color range definition, the colors of two kinds of powder are more different. Both false-color THz images can present the cuvette and two kinds of powder clearly. By comparing the THz imaging with grayscale images, false-color THz imaging can display different materials by different colors in one image, instead of the requirement of many grayscale images. It is no need to generate grayscale images at each frequency, making false-color THz imaging consume less time. The false-color imaging is clearer and more efficient, which is more suitable for recognition in a rapid security check. In the situation of complex materials, more false-color THz images can be generated by different color range definitions to assist the detection. The spatial resolution of the imaging system is also investigated. The resolution of imaging system is investigated by imaging home-made standard sample plate. For the frequency range that is higher than 0.3 THz, the resolution can reach 0.4 mm, which is larger than enough for most practical applications.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475016 and 61177082).
    [1]

    Dragoman D, Dragoman M 2004 Prog. Quantum Electron. 28 1

    [2]

    Bradley F, Zhang X C 2003 Physics 32 286 (in Chinese)[Bradley F, 张希成2003 物理32 286]

    [3]

    Woodward R M, Cole B E, Wallace V P, Pye R J, Arnone D D, Linfield E H, Pepper M 2002 Phys. Med.Biol. 47 3853

    [4]

    Kawase K, Ogawa Y, Watanabe Y, Inoue H 2003 Opt. Exp. 11 2549

    [5]

    Liu S J, Yu F, Li K, Zhou J 2013 Physics 42 788 (in Chinese) [刘尚建,余菲,李凯,周静 2013 物理 42 788]

    [6]

    Fukunaga K, Ogawa Y, Hayashi S, Hosako I 2007 IEICE ELECTRON EXP. 4 258

    [7]

    Siegel P H 2004 IEEE T MICROW. THEORY 52 2438

    [8]

    Kemp M C, Glauser A, Baker C 2007 International Journal of High. 17 403

    [9]

    Walther M, Plochocka P, Fischer B, Helm H, Jepsen P U 2002 Biopolymers 67 310

    [10]

    Li N, Shen J L, Sun J H, Liang L S, Xu X Y, Lu M H, Jia Y 2005 Opt. Exp. 13 6750

    [11]

    Hu Y, Huang P, Guo L T, Wang X H, Zhang C 2006 Phys. Lett. A 359 728

    [12]

    Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D 2005 Semicond. Sci. Technol. 20 S266

    [13]

    Exter M V, Fattinger C, Grischkowsky D 1989 Opt. Lett. 14 1128

    [14]

    Hu B, Nuss M 1995 Opt. Lett. 20 1716

    [15]

    Mittleman D M, Jacobsen R H, Nuss M C 1996 IEEE J Sel. Top. Quant. 2 679

    [16]

    Mittleman D M, Hunsche S, Boivin L, Nuss M C 1997 Opt. Lett. 22 904

    [17]

    Lu M, Shen J L, Li N, Zhang Y, Zhang C L, Liang L S, Xu X Y 2006 J Appl. Phys. 100 103104

    [18]

    Zhang Z W, Zhang Y, Zhao G Z, Zhang C 2007 Optik 118 325

    [19]

    Byrne M B, Cunningham J, Tych K, Burnett A D, Stringer M R, Wood C D, Dazhang L, Lachab M, Linfield E H, Davies A G 2008 Appl. Phys. Lett. 93 182904

    [20]

    Palka N 2011 Acta Phys. Pol. A 120 713

  • [1]

    Dragoman D, Dragoman M 2004 Prog. Quantum Electron. 28 1

    [2]

    Bradley F, Zhang X C 2003 Physics 32 286 (in Chinese)[Bradley F, 张希成2003 物理32 286]

    [3]

    Woodward R M, Cole B E, Wallace V P, Pye R J, Arnone D D, Linfield E H, Pepper M 2002 Phys. Med.Biol. 47 3853

    [4]

    Kawase K, Ogawa Y, Watanabe Y, Inoue H 2003 Opt. Exp. 11 2549

    [5]

    Liu S J, Yu F, Li K, Zhou J 2013 Physics 42 788 (in Chinese) [刘尚建,余菲,李凯,周静 2013 物理 42 788]

    [6]

    Fukunaga K, Ogawa Y, Hayashi S, Hosako I 2007 IEICE ELECTRON EXP. 4 258

    [7]

    Siegel P H 2004 IEEE T MICROW. THEORY 52 2438

    [8]

    Kemp M C, Glauser A, Baker C 2007 International Journal of High. 17 403

    [9]

    Walther M, Plochocka P, Fischer B, Helm H, Jepsen P U 2002 Biopolymers 67 310

    [10]

    Li N, Shen J L, Sun J H, Liang L S, Xu X Y, Lu M H, Jia Y 2005 Opt. Exp. 13 6750

    [11]

    Hu Y, Huang P, Guo L T, Wang X H, Zhang C 2006 Phys. Lett. A 359 728

    [12]

    Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D 2005 Semicond. Sci. Technol. 20 S266

    [13]

    Exter M V, Fattinger C, Grischkowsky D 1989 Opt. Lett. 14 1128

    [14]

    Hu B, Nuss M 1995 Opt. Lett. 20 1716

    [15]

    Mittleman D M, Jacobsen R H, Nuss M C 1996 IEEE J Sel. Top. Quant. 2 679

    [16]

    Mittleman D M, Hunsche S, Boivin L, Nuss M C 1997 Opt. Lett. 22 904

    [17]

    Lu M, Shen J L, Li N, Zhang Y, Zhang C L, Liang L S, Xu X Y 2006 J Appl. Phys. 100 103104

    [18]

    Zhang Z W, Zhang Y, Zhao G Z, Zhang C 2007 Optik 118 325

    [19]

    Byrne M B, Cunningham J, Tych K, Burnett A D, Stringer M R, Wood C D, Dazhang L, Lachab M, Linfield E H, Davies A G 2008 Appl. Phys. Lett. 93 182904

    [20]

    Palka N 2011 Acta Phys. Pol. A 120 713

  • [1] Li Gao-Fang, Yin Wen, Huang Jing-Guo, Cui Hao-Yang, Ye Han-Jing, Gao Yan-Qing, Huang Zhi-Ming, Chu Jun-Hao. Conductivity in sulfur doped gallium selenide crystals measured by terahertz time-domain spectroscopy. Acta Physica Sinica, 2023, 72(4): 047801. doi: 10.7498/aps.72.20221548
    [2] Huang Ruo-Tong, Li Jiu-Sheng. Terahertz multibeam modulation reflection-coded metasurface. Acta Physica Sinica, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [3] Biological effects of terahertz waves. Acta Physica Sinica, 2022, (): . doi: 10.7498/aps.71.20211996
    [4] Wang Zhi-Quan, Shi Wei. Holographic detection of pulsed terahertz waves in terahertz time-domain spectroscopy. Acta Physica Sinica, 2022, 71(18): 188704. doi: 10.7498/aps.71.20220983
    [5] Feng Long-Cheng, Du Chen, Yang Sheng-Xin, Zhang Cai-Hong, Wu Jing-Bo, Fan Ke-Bin, Jin Biao-Bing, Chen Jian, Wu Pei-Heng. Research on terahertz real-time near-field spectral imaging. Acta Physica Sinica, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [6] Hou Lei, Wang Jun-Nan, Wang Lei, Shi Wei. Experimental study and simulation analysis of terahertz absorption spectra of α-lactose aqueous solution. Acta Physica Sinica, 2021, 70(24): 243202. doi: 10.7498/aps.70.20211716
    [7] Peng Xiao-Yu, Zhou Huan. Biological effects of terahertz waves. Acta Physica Sinica, 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [8] Wu Li-Min, Xu De-Gang, Wang Yu-Ye, Ge Mei-Lan, Li Hai-Bin, Wang Ze-Long, Yao Jian-Quan. Common path continuous terahertz reflection and attenuated total reflection imaging. Acta Physica Sinica, 2021, 70(11): 118701. doi: 10.7498/aps.70.20210182
    [9] Chen Zhi-Wen, She Zhen-Yue, Liao Kai-Yu, Huang Wei, Yan Hui, Zhu Shi-Liang. Terahertz measurement based on Rydberg atomic antenna. Acta Physica Sinica, 2021, 70(6): 060702. doi: 10.7498/aps.70.20201870
    [10] Jiang Wei, Zhao Huan, Wang Guo-Cui, Wang Xin-Ke, Han Peng, Sun Wen-Feng, Ye Jia-Sheng, Feng Sheng-Fei, Zhang Yan. Birefringence characteristics of magnesium oxide crystal in terahertz frequency region by using terahertz focal plane imaging. Acta Physica Sinica, 2020, 69(20): 208702. doi: 10.7498/aps.69.20200766
    [11] Wang Da-Yong, Li Bing, Rong Lu, Zhao Jie, Wang Yun-Xin, Zhai Chang-Chao. Continuous-wave terahertz quantitative dual-plane ptychography. Acta Physica Sinica, 2020, 69(2): 028701. doi: 10.7498/aps.69.20191310
    [12] Zhang Xu-Tao, Que Xiao-Feng, Cai He, Sun Jin-Hai, Zhang Jing, Li Liang-Sheng, Liu Yong-Qiang. Simulations and time-domain spectroscopy measurements for terahertz radar-cross section. Acta Physica Sinica, 2019, 68(16): 168701. doi: 10.7498/aps.68.20190552
    [13] Dai Bing, Wang Peng, Zhou Yu, You Cheng-Wu, Hu Jiang-Sheng, Yang Zhen-Gang, Wang Ke-Jia, Liu Jin-Song. Wavelet transform in the application of three-dimensional terahertz imaging for internal defect detection. Acta Physica Sinica, 2017, 66(8): 088701. doi: 10.7498/aps.66.088701
    [14] Huang Hai-Xuan, Xu Ping, Ruan Shuang-Chen, Yang Tuo, Yuan Xia, Huang Yan-Yan. Design of a terahertz even splitter and its tolerance analysis. Acta Physica Sinica, 2015, 64(15): 154212. doi: 10.7498/aps.64.154212
    [15] Sun Yi-Wen, Zhong Jun-Lan, Zuo Jian, Zhang Cun-Lin, Dan Guo. Principal component analysis of terahertz spectrum on hemagglutinin protein and its antibody. Acta Physica Sinica, 2015, 64(16): 168701. doi: 10.7498/aps.64.168701
    [16] Wang Wei-Ning. Terahertz and Raman spectra of L-threonine. Acta Physica Sinica, 2009, 58(11): 7640-7645. doi: 10.7498/aps.58.7640
    [17] Zhang Xian-Bin, Shi Wei. Study of imaging system based on the tunable terahertz wave source with quasi-Gaussian beam output. Acta Physica Sinica, 2008, 57(8): 4984-4990. doi: 10.7498/aps.57.4984
    [18] Wang Wei-Ning, Li Yuan-Bo, Yue Wei-Wei. Vibrational spectrum of histidine and arginine in THz range. Acta Physica Sinica, 2007, 56(2): 781-785. doi: 10.7498/aps.56.781
    [19] Ma Shi-Hua, Shi Yu-Lei, Xu Xin-Long, Yan Wei, Yang Yu-Ping, Wang Li. Low-frequency collective vibrational modes of asparagine by terahertz time-domain spectroscopy. Acta Physica Sinica, 2006, 55(8): 4091-4095. doi: 10.7498/aps.55.4091
    [20] Yue Wei-Wei, Wang Wei-Ning, Zhao Guo-Zhong, Zhang Cun-Lin, Yan Hai-Tao. THz spectrum of aromatic amino acid. Acta Physica Sinica, 2005, 54(7): 3094-3099. doi: 10.7498/aps.54.3094
Metrics
  • Abstract views:  7670
  • PDF Downloads:  641
  • Cited By: 0
Publishing process
  • Received Date:  20 September 2014
  • Accepted Date:  10 December 2014
  • Published Online:  05 June 2015

/

返回文章
返回